The enterobacterium Erwinia amylovora causes fire blight on members of the family Rosaceae, with economic importance on apple and pear. During pathogenesis, the bacterium is exposed to a variety of plant-borne antimicrobial compounds. In plants of Rosaceae, many constitutively synthesized isoflavonoids affecting microorganisms were identified. Bacterial multidrug efflux transporters which mediate resistance toward structurally unrelated compounds might confer tolerance to these phytoalexins. To prove this hypothesis, we cloned the acrAB locus from E. amylovora encoding a resistance nodulation division-type transport system. In Escherichia coli, AcrAB of E. amylovora conferred resistance to hydrophobic and amphiphilic toxins. An acrB-deficient E. amylovora mutant was impaired in virulence on apple rootstock MM 106. Furthermore, it was susceptible toward extracts of leaves of MM 106 as well as to the apple phytoalexins phloretin, naringenin, quercetin, and (+)-catechin. The expression of acrAB was determined using the promoterless reporter gene egfp. The acrAB operon was up-regulated in vitro by the addition of phloretin and naringenin. The promoter activity of acrR, encoding a regulatory protein involved in acrAB expression, was increased by naringenin. In planta, an induction of acrAB was proved by confocal laser scanning microscopy. Our results strongly suggest that the AcrAB transport system plays an important role as a protein complex required for virulence of E. amylovora in resistance toward apple phytoalexins and that it is required for successful colonization of a host plant.
Isoprenyl diphosphate synthases (IDSs) produce the ubiquitous branched-chain diphosphates of different lengths that are precursors of all major classes of terpenes. Typically, individual shortchain IDSs (scIDSs) make the C 10 , C 15 , and C 20 isoprenyl diphosphates separately. Here, we report that the product length synthesized by a single scIDS shifts depending on the divalent metal cofactor present. This previously undescribed mechanism of carbon chainlength determination was discovered for a scIDS from juvenile horseradish leaf beetles, Phaedon cochleariae. The recombinant enzyme P. cochleariae isoprenyl diphosphate synthase 1 (PcIDS1) yields 96% C 10 -geranyl diphosphate (GDP) and only 4% C 15 -farnesyl diphosphate (FDP) in the presence of Co 2+ or Mn 2+ as a cofactor, whereas it yields only 18% C 10 GDP but 82% C 15 FDP in the presence of Mg 2+. In reaction with Co 2+ , PcIDS1 has a K m of 11.6 μM for dimethylallyl diphosphate as a cosubstrate and 24.3 μM for GDP. However, with Mg 2+ , PcIDS1 has a K m of 1.18 μM for GDP, suggesting that this substrate is favored by the enzyme under such conditions. RNAi targeting PcIDS1 revealed the participation of this enzyme in the de novo synthesis of defensive monoterpenoids in the beetle larvae. As an FDP synthase, PcIDS1 could be associated with the formation of sesquiterpenes, such as juvenile hormones. Detection of Co , or Mg 2+ in the beetle larvae suggests flux control into C 10 vs. C 15 isoprenoids could be accomplished by these ions in vivo. The dependence of product chain length of scIDSs on metal cofactor identity introduces an additional regulation for these branch point enzymes of terpene metabolism.cobalt | kinetic | prenyltransferase | secretions | silencing
Chrysomeline larvae respond to disturbance and attack by everting dorsal glandular reservoirs, which release defensive secretions. The ancestral defense is based on the de novo synthesis of monoterpene iridoids. The catabolization of the host-plant O-glucoside salicin into salicylaldehyde is a character state that evolved later in two distinct lineages, which specialized on Salicaceae. By using two species producing monoterpenes (Hydrothassa marginella and Phratora laticollis) and two sequestering species (Chrysomela populi and Phratora vitellinae), we studied the molecular basis of sequestration by feeding the larvae structurally different thioglucosides resembling natural O-glucosides. Their accumulation in the defensive systems demonstrated that the larvae possess transport systems, which are evolutionarily adapted to the glycosides of their host plants. Minor structural modifications in the aglycon result in drastically reduced transport rates of the test compounds. Moreover, the ancestral iridoid-producing leaf beetles already possess a fully functional import system for an early precursor of the iridoid defenses. Our data confirm an evolutionary scenario in which, after a host-plant change, the transport system of the leaf beetles may play a pivotal role in the adaptation on new hosts by selecting plant-derived glucosides that can be channeled to the defensive system.
Pathogenic bacteria with habitats inside and outside a given host react to changes in environmental parameters by synthesizing gene products specifically needed during pathogenic or saprophytic growth. Temperature effects have been investigated in detail for pathogens of warm-blooded hosts, and major principles governing the temperature-sensing mechanism have been uncovered. Generally, transcription of virulence genes in these pathogens is induced at higher temperatures (37-41 degrees C), which are typical for body cavities and host tissues. However, effects of temperature on virulence determinants in plant pathogenic bacteria have not been focused on in detail. Interestingly, almost all virulence genes of plant pathogenic bacteria studied with respect to temperature exhibit increased transcription at temperatures well below the respective growth optima. This includes virulence determinants such as those directing bacteria-to-plant gene transfer, plant cell-wall-degrading enzymes, phytotoxins, ice nucleation activity, exopolysaccharide production, and the type III protein secretion machinery. Although many of the studied phytopathogens cause "cold-weather" diseases, the ecological rationale for this phenomenon remains to be studied in detail. This mini-review summarizes our current knowledge on thermoregulation of cellular processes taking place in bacterial phytopathogens in response to temperature changes. Since the temperature range of interest is different from that relevant to pathogens of mammals, one envisions novel principles of thermo-sensing in bacteria interacting with plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.