The molecular pathway of enrofloxacin, a fluoroquinolone antibiotic, through the outer membrane channel OmpF of Escherichia coli is investigated. High-resolution ion current fluctuation analysis reveals a strong affinity for enrofloxacin to OmpF, the highest value ever recorded for an antibiotic-channel interaction. A single point mutation in the constriction zone of OmpF, replacing aspartic acid at the 113 position with asparagine (D113N), lowers the affinity to a level comparable to other antibiotics. All-atom molecular dynamics simulations allow rationalizing the translocation pathways: wild-type OmpF has two symmetric binding sites for enrofloxacin located at each channel entry separated by a large energy barrier in the center, which inhibits antibiotic translocation. In this particular case, our simulations suggest that the ion current blockages are caused by molecules occupying either one of these peripheral binding sites. Removal of the negative charge on position 113 removes the central barrier and shifts the two peripheral binding sites to a unique central site, which facilitates translocation. Fluorescence steady-state measurements agree with the different location of binding sites for wild-type OmpF and the mutant. Our results demonstrate how a single-point mutation of the porin, and the resulting intrachannel shift of the affinity site, may substantially modify translocation.
The enterobacterium Erwinia amylovora causes fire blight on members of the family Rosaceae, with economic importance on apple and pear. During pathogenesis, the bacterium is exposed to a variety of plant-borne antimicrobial compounds. In plants of Rosaceae, many constitutively synthesized isoflavonoids affecting microorganisms were identified. Bacterial multidrug efflux transporters which mediate resistance toward structurally unrelated compounds might confer tolerance to these phytoalexins. To prove this hypothesis, we cloned the acrAB locus from E. amylovora encoding a resistance nodulation division-type transport system. In Escherichia coli, AcrAB of E. amylovora conferred resistance to hydrophobic and amphiphilic toxins. An acrB-deficient E. amylovora mutant was impaired in virulence on apple rootstock MM 106. Furthermore, it was susceptible toward extracts of leaves of MM 106 as well as to the apple phytoalexins phloretin, naringenin, quercetin, and (+)-catechin. The expression of acrAB was determined using the promoterless reporter gene egfp. The acrAB operon was up-regulated in vitro by the addition of phloretin and naringenin. The promoter activity of acrR, encoding a regulatory protein involved in acrAB expression, was increased by naringenin. In planta, an induction of acrAB was proved by confocal laser scanning microscopy. Our results strongly suggest that the AcrAB transport system plays an important role as a protein complex required for virulence of E. amylovora in resistance toward apple phytoalexins and that it is required for successful colonization of a host plant.
The efficacy of drugs and biomolecules relies on their ability to pass through the bilayer. The development of methods to directly and sensitively monitor these membrane transport processes has remained an experimental challenge. A macrocyclic host (p-sulfonatocalix[4]arene or cucurbit[7]uril) and a fluorescent dye (lucigenin or berberine) are encapsulated as a chemosensing ensemble inside liposomes, which allows for a direct, real-time fluorescence monitoring of the passage of unlabeled bioorganic analytes. This in vitro assay is transferable to different channel proteins and analytes, has potential for fluorescence-based screening, e.g., of channel modulators, and yields the absolute kinetics of translocation. Using this new biophysical method, we observed for the first time direct rapid translocation of protamine, an antimicrobial peptide, through the bacterial transmembrane protein OmpF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.