Recently, we described a new carbohydrate-induced conformational tumour-epitope on mucin-1 (MUC1) with the potential for improvement of immunotherapies [29, 30]. PankoMab is a novel antibody, which binds specifically to this epitope and was designed to show the highest glycosylation dependency and the strongest additive binding effect when compared to other MUC1 antibodies. This enables PankoMab to differentiate between tumour MUC1 and non-tumour MUC1 epitopes. It has a high-affinity towards tumour cells (e.g. KD [M] of 0.9 and 3x10(-9 )towards NM-D4 and ZR75-1, respectively) and detects a very large number of binding sites (e.g. 1.0 and 2.4x10(6 )for NM-D4 and ZR75-1, respectively). PankoMab is rapidly internalised, and after toxin coupling is able to induce very effectively toxin-mediated antigen-specific tumour cell killing. PankoMab reveals a potent tumour-specific antibody-dependent cell cytotoxicity (ADCC). PankoMab is, therefore, distinguished by a combination of advantages compared to other MUC1 antibodies in clinical development, including higher tumour specificity, higher affinity, a higher number of binding sites, largely reduced binding to shed MUC1 from colon and pancreatic carcinoma patients, no binding to mononucleated cells from peripheral blood (except approximately 7% of activated T cells), stronger ADCC activity and rapid internalisation as required for toxin-mediated cell killing. This renders it a superior antibody for in vivo diagnostics and various immunotherapeutic approaches.
Head and neck squamous cell carcinomas (HNSCC) exhibiting resistance to the EGFR-targeting drug cetuximab poses a challenge to their effective clinical management. Here, we report a specific mechanism of resistance in this setting based upon the presence of a single nucleotide polymorphism encoding EGFR-K (K-allele), which is expressed in >40% of HNSCC cases. Patients expressing the K-allele showed significantly shorter progression-free survival upon palliative treatment with cetuximab plus chemotherapy or radiation. In several EGFR-mediated cancer models, cetuximab failed to inhibit downstream signaling or to kill cells harboring a high K-allele frequency. Cetuximab affinity for EGFR-K was reduced slightly, but ligand-mediated EGFR activation was intact. We found a lack of glycan sialyation on EGFR-K that associated with reduced protein stability, suggesting a structural basis for reduced cetuximab efficacy. CetuGEX, an antibody with optimized Fc glycosylation targeting the same epitope as cetuximab, restored HNSCC sensitivity in a manner associated with antibody-dependent cellular cytotoxicity rather than EGFR pathway inhibition. Overall, our results highlight EGFR-K expression as a key mechanism of cetuximab resistance to evaluate prospectively as a predictive biomarker in HNSCC patients. Further, they offer a preclinical rationale for the use of ADCC-optimized antibodies to treat tumors harboring this EGFR isoform. .
The formyl peptide receptor (FPR), a heptahelical G protein-coupled receptor on phagocytic leukocytes, can be triggered by bacterially derived oligopeptides of the prototype fMLP. Although FPR expression and activation have been associated with cells of myeloid origin and bacterial inflammation, the receptor has recently been identified in nonmyeloid cells, thus suggesting additional physiological functions and the existence of an endogenous agonist. In this study, we demonstrate the presence and functional activation of the FPR in the human lung cell line A549, which represents an extrahepatic model for the regulation of acute-phase proteins. Activation of the FPR in A549 cells cannot only be triggered by fMLP, but also by an agonistic peptide of the recently identified endogenous FPR ligand, annexin 1. In addition to inducing changes in the F-actin content, annexin 1-mediated triggering of the FPR results in an increased expression of acute-phase proteins. Hence, activation of nonmyeloid FPR by its endogenous ligand annexin 1 could participate in the regulation of acute-phase responses, e.g., during inflammation and/or wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.