-Development of an accurate laboratory diagnostic tool, as recommended by WHO, is the key step to overcome the serious global health burden caused by malaria. This study aims to explore the possibility of computerized diagnosis of malaria and to develop a novel image processing algorithm to reliably detect the presence of malaria parasite from Plasmodium falciparum species in thin smears of Giemsa stained peripheral blood sample. The algorithm was designed as an expert system based on the method used by medical practitioner performing microscopy diagnosis of malaria. Digital images were acquired using a digital camera connected to a light microscope. Prior to processing, the images were subjected to gray-scale conversion to decrease image variability. Global thresholding were implemented to obtain erythrocyte and other blood cell components in each image. The segmented images were further processed to obtain possibly infected erythrocyte and the components of parasite inside the corresponding erythrocyte using multiple threshold. These parasite's constituents (nucleus and cytoplasm) were used as the preliminary basis for parasite/non parasite classification. Malaria samples prepared and provided by Eijkman Institute of Molecular Biology Indonesia were used to test the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.