This paper presents a novel control strategy, which we call optiPilot, for autonomous flight in the vicinity of obstacles. Most existing autopilots rely on a complete 6-degree-of-freedom state estimation using a GPS and an Inertial Measurement Unit (IMU) and are unable to detect and avoid obstacles. This is a limitation for missions such as surveillance and environment monitoring that may require near-obstacle flight in urban areas or mountainous environments. OptiPilot instead uses optic flow to estimate proximity of obstacles and avoid them.Our approach takes advantage of the fact that, for most platforms in translational flight (as opposed to near-hover flight), the translatory motion is essentially aligned with the aircraft main axis. This property allows us to directly interpret optic flow measurements as proximity indications. We take inspiration from neural and behavioural strategies of flying insects to propose a simple mapping of optic flow measurements into control signals that requires only a lightweight and power-efficient sensor suite and minimal processing power.In this paper, we first describe results obtained in simulation before presenting the implementation of optiPilot on a real flying platform equipped only with lightweight and inexpensive optic computer mouse sensors, MEMS rate gyroscopes and a pressure-based airspeed sensor. We show that the proposed control strategy not only allows collision-free flight in the vicinity of obstacles, but is also able to stabilise both attitude and altitude over flat terrain. These re-
ABSTRACT:This paper presents an affordable, fully automated and accurate mapping solutions based on ultra-light UAV imagery. Several datasets are analysed and their accuracy is estimated. We show that the accuracy highly depends on the ground resolution (flying height) of the input imagery. When chosen appropriately this mapping solution can compete with traditional mapping solutions that capture fewer high-resolution images from airplanes and that rely on highly accurate orientation and positioning sensors on board. Due to the careful integration with recent computer vision techniques, the post processing is robust and fully automatic and can deal with inaccurate position and orientation information which are typically problematic with traditional techniques.
Because of their ability to naturally float in the air, indoor airships (often called blimps) constitute an appealing platform for research in aerial robotics. However, when confronted to long lasting experiments such as those involving learning or evolutionary techniques, blimps present the disadvantage that they cannot be linked to external power sources and tend to have little mechanical resistance due to their low weight budget. One solution to this problem is to use a realistic flight simulator, which can also significantly reduce experimental duration by running faster than real time. This requires an efficient physical dynamic modelling and parameter identification procedure, which are complicated to develop and usually rely on costly facilities such as wind tunnels. In this paper, we present a simple and efficient physics-based dynamic modelling of indoor airships including a pragmatic methodology for parameter identification without the need for complex or costly test facilities. Our approach is tested with an existing blimp in a vision-based navigation task. Neuronal controllers are evolved in simulation to map visual input into motor commands in order to steer the flying robot forward as fast as possible while avoiding collisions. After evolution, the best individuals are successfully transferred to the physical blimp, which experimentally demonstrates the efficiency of the proposed approach.
Abstract-Fully autonomous control of ultra-light indoor airplanes has not yet been achieved because of the strong limitations on the kind of sensors that can be embedded making it difficult to obtain good estimations of altitude. We propose to revisit altitude control by considering it as an obstacle avoidance problem and introduce a novel control scheme where the ground and ceiling is avoided based on translatory optic flow, in a way similar to existing vision-based wall avoidance strategies.We show that this strategy is successful at controlling a simulated microflyer without any explicit altitude estimation and using only simple sensors and processing that have already been embedded in an existing 10-gram microflyer. This result is thus a significant step toward autonomous control of indoor flying robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.