Abstract. We propose to use binary strings as an efficient feature point descriptor, which we call BRIEF. We show that it is highly discriminative even when using relatively few bits and can be computed using simple intensity difference tests. Furthermore, the descriptor similarity can be evaluated using the Hamming distance, which is very efficient to compute, instead of the L2 norm as is usually done.As a result, BRIEF is very fast both to build and to match. We compare it against SURF and U-SURF on standard benchmarks and show that it yields a similar or better recognition performance, while running in a fraction of the time required by either.
Binary descriptors are becoming increasingly popular as a means to compare feature points very fast and while requiring comparatively small amounts of memory. The typical approach to creating them is to first compute floating-point ones, using an algorithm such as SIFT, and then to binarize them.In this paper, we show that we can directly compute a binary descriptor we call BRIEF on the basis of simple intensity difference tests. As a result, BRIEF is very fast both to build and to match. We compare it against SURF and SIFT on standard benchmarks and show that it yields comparable recognition accuracy, while running in an almost vanishing fraction of the time required by either.
SIFT-like local feature descriptors are ubiquitously employed in computer vision applications such as content-based retrieval, video analysis, copy detection, object recognition, photo tourism, and 3D reconstruction. Feature descriptors can be designed to be invariant to certain classes of photometric and geometric transformations, in particular, affine and intensity scale transformations. However, real transformations that an image can undergo can only be approximately modeled in this way, and thus most descriptors are only approximately invariant in practice. Second, descriptors are usually high dimensional (e.g., SIFT is represented as a 128-dimensional vector). In large-scale retrieval and matching problems, this can pose challenges in storing and retrieving descriptor data. We map the descriptor vectors into the Hamming space in which the Hamming metric is used to compare the resulting representations. This way, we reduce the size of the descriptors by representing them as short binary strings and learn descriptor invariance from examples. We show extensive experimental validation, demonstrating the advantage of the proposed approach.
We present a new approach for large-scale multi-view stereo matching, which is designed to operate on ultra high-resolution image sets and efficiently compute dense 3D point clouds. We show that, using a robust descriptor for matching purposes and high-resolution images, we can skip the computationally expensive steps that other algorithms require. As a result, our method has low memory requirements and low computational complexity while producing 3D point clouds containing virtually no outliers. This makes it exceedingly suitable for large-scale reconstruction. The core of our algorithm is the dense matching of image pairs using DAISY descriptors, implemented so as to eliminate redundancies and optimize memory access. We use a variety of challenging data sets to validate and compare our results against other algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.