Terrestrial laser scanners produce point clouds with a huge number of points within a very limited surrounding. In built-up areas, many of the man-made objects are dominated by planar surfaces. We introduce a RANSAC based preprocessing technique that transforms the irregular point cloud into a set of locally delimited surface patches in order to reduce the amount of data and to achieve a higher level of abstraction. In a second step, the resulting patches are grouped to large planes while ignoring small and irrelevant structures. The approach is tested with a dataset of a builtup area which is described very well needing only a small number of geometric primitives. The grouping emphasizes man-made structures and could be used as a preclassification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.