Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tjar20 A survey on some factors potentially affecting losses of managed honey bee colonies in Luxembourg over the winters
Pesticide residues (112 compounds) were quantified by GC-MS/MS or LC-MS/MS in 85 bee bread samples and 154 pollen samples obtained from five apiaries each with three or four colonies (genotype Buckfast) in Luxembourg over the period 2011-2013. Thiacloprid, chlorfenvinphos, tebuconazole, and methiocarb were found most frequently in bee bread while thiacloprid, permethrin-cis, and permethrin-trans were detected most frequently in the pollen samples. Three neonicotinoid insecticides (clothianidin, imidacloprid, and thiamethoxam) that were restricted by an EU regulation in 2013 after our sampling campaign was finished were each found in less than 8% of the pollen or bee bread samples. The maximum concentrations of thiacloprid, metazachlor, and methiocarb measured in the pollen collected by a group of honeybee colonies (n = 5) without survivors within the 3-year period of observation were 86.20 ± 10.74 ng/g, 2.80 ± 1.26 ng/g, and below the limit of quantification, respectively. The maximum concentrations of the same compounds measured in the pollen collected by a group of honeybee colonies with significantly (P = 0.02) more survivors (7 out of 9) than expected, if the survivors had been distributed randomly among the groups of colonies, were 11.98 ± 2.28 ng/g, 0.44 ± 0.29 ng/g, and 8.49 ± 4.13 ng/g, respectively. No honeybee colony that gathered pollen containing more than 23 ng/g thiacloprid survived the 3-year project period. There was no statistically significant association between pesticide residues in the bee bread and the survival of the colonies. Actions already taken or planned and potential further actions to protect bees from exposure to pesticides are discussed.
Twenty managed honey bee colonies, split between 5 apiaries with 4 hives each, were monitored between the summer of 2011 and spring of 2013. Living bees were sampled in July 2011, July 2012, and August 2012. Twenty-five, medium-aged bees, free of varroa mites, were pooled per colony and date, to form one sample. Unlike in France and Belgium, Chronic Bee Paralysis Virus (CBPV) has not been found in Luxembourg. Slow Bee Paralysis Virus (SBPV) and Israeli Acute Paralysis Virus (IAPV) levels were below detection limits. Traces of Kashmir Bee Virus (KBV) were amplified. Black Queen Cell Virus (BQCV), Varroa destructor Virus-1 (VDV-1), and SacBrood Virus (SBV) were detected in all samples and are reported from Luxembourg for the first time. Varroa destructor Macula- Like Virus (VdMLV), Deformed Wing Virus (DWV), and Acute Bee Paralysis Virus (ABPV) were detected at all locations, and in most but not all samples. There was a significant increase in VDV-1 and DWV levels within the observation period. A principal component analysis was unable to separate the bees of colonies that survived the following winter from bees that died, based on their virus contents in summer. The number of dead varroa mites found below colonies was elevated in colonies that died in the following winter. Significant positive relationships were found between the log-transformed virus levels of the bees and the log-transformed number of mites found below the colonies per week, for VDV-1 and DWV. Sacbrood virus levels were independent of varroa levels, suggesting a neutral or competitive relationship between this virus and varroa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.