In this work, we present an adaptive motion planning approach for impedance-controlled robots to modify their tasks based on human physical interactions. We use a class of parameterized time-independent dynamical systems for motion generation where the modulation of such parameters allows for motion flexibility. To adapt to human interactions, we update the parameters of our dynamical system in order to reduce the tracking error (i.e., between the desired trajectory generated by the dynamical system and the real trajectory influenced by the human interaction). We provide analytical analysis and several simulations of our method. Finally, we investigate our approach through real world experiments with a 7-DOF KUKA LWR 4+ robot performing tasks such as polishing and pick-and-place.
We study the problem of robotic stacking with objects of complex geometry. We propose a challenging and diverse set of such objects that was carefully designed to require strategies beyond a simple "pick-and-place" solution. Our method is a reinforcement learning (RL) approach combined with visionbased interactive policy distillation and simulation-to-reality transfer. Our learned policies can efficiently handle multiple object combinations in the real world and exhibit a large variety of stacking skills. In a large experimental study, we investigate what choices matter for learning such general vision-based agents in simulation, and what affects optimal transfer to the real robot. We then leverage data collected by such policies and improve upon them with offline RL. A video and a blog post of our work are provided as supplementary material. 3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.