The advent of novel measurement instrumentation can lead to paradigm shifts in scientific research. Optical atomic clocks, due to their unprecedented stability 1,2,3 and uncertainty, 4,5,6,7 are already being used to test physical theories 8,9 and herald a revision of the International System of units (SI). 10,11 However, to unlock their potential for cross-disciplinary applications such as relativistic geodesy, 12 a major challenge remains. This is their transformation from highly specialized instruments restricted to national metrology laboratories into flexible devices deployable in different locations. 13,14,15 Here we report the first field measurement campaign performed with a ubiquitously applicable 87 Sr optical lattice clock. 13 We use it to determine the gravity potential difference between the middle of a mountain and a location 90 km apart, exploiting both local and remote clock comparisons to eliminate potential clock errors. A local comparison with a 171 Yb lattice clock 16 also serves as an important check on the international consistency of independently developed optical clocks. This campaign demonstrates the exciting prospects for transportable optical clocks.The application of clocks in geodesy fulfils long-standing proposals to interpret a measurement of the fractional relativistic redshift Δνrel/ν0 to determine the gravity potential difference ΔU = c 2 Δνrel/ν0 between clocks at two sites (c being the speed of light). 12 National geodetic height systems based on classical terrestrial and satellite-based measurements exhibit discrepancies at the decimetre level. 17 Optical clocks, combined with high performance frequency dissemination techniques 18,19 offer an attractive way to resolve these discrepancies, as they combine the advantage of high spectral resolution with small error accumulation over long distances. 18,20 However, to achieve competitive capability requires high clock performance: a fractional frequency accuracy of 1×10 17 corresponds to a resolution of about 10 cm in height. Furthermore, it is important to realize that the sideby-side frequency ratio has to be known to determine the remote frequency shift Δνrel. Taking the uncertainty budgets of optical clocks for granted, harbours the possibility of errors, because very few have been verified experimentally to the low 10 17 region or beyond. 5,7,18,21 A transportable optical clock not only increases the flexibility in measurement sites but mitigates the risk of undetected errors by enabling local calibrations to be performed.The test site chosen for our demonstration of chronometric levelling 12 with optical clocks was the Laboratoire Souterrain de Modane (LSM) in France, with the Italian metrology institute INRIM in Torino serving as the reference site. The height difference between the two sites is approximately 1000 m, corresponding to a fractional redshift of about 10 -13 . From a geodetic point of view, LSM is a challenging and interesting location in which to perform such measurements: firstly, it is located in the middl...
Phase compensated optical fiber links enable high accuracy atomic clocks separated by thousands of kilometers to be compared with unprecedented statistical resolution. By searching for a daily variation of the frequency difference between four strontium optical lattice clocks in different locations throughout Europe connected by such links, we improve upon previous tests of time dilation predicted by special relativity. We obtain a constraint on the Robertson-Mansouri-Sexl parameter |α| 1.1 × 10 −8 quantifying a violation of time dilation, thus improving by a factor of around two the best known constraint obtained with Ives-Stilwell type experiments, and by two orders of magnitude the best constraint obtained by comparing atomic clocks. This work is the first of a new generation of tests of fundamental physics using optical clocks and fiber links. As clocks improve, and as fiber links are routinely operated, we expect that the tests initiated in this paper will improve by orders of magnitude in the near future.
We propose an optoelectronic phase-locked loop concept which enables to stabilize optical beat notes at high frequencies in the mm-wave domain. It relies on the use of a nonlinear-response Mach-Zehnder modulator. This concept is demonstrated at 100 GHz using a two-axis dual-frequency laser turned into a voltage controlled oscillator by means of an intracavity electrooptic crystal. A relative frequency stability better than 10⁻¹¹ is reported. This approach of optoelectronic down conversion opens the way to the realization of continuously tunable ultra-narrow linewidth THz radiation.
We report the implementation of a self-referenced optical frequency comb generated by a passively mode-locked all polarization maintaining (PM) Yb fiber laser based on a nonlinear amplifying loop mirror (NALM). After spectral broadening the optical spectrum spans from 650 nm to 1400 nm, allowing for the generation of an optical octave and carrier envelope offset frequency (f) stabilization through a conventional f-2f interferometer. We demonstrate for the first time the stabilization of the f of such a PM Yb system with an in-loop fractional frequency stability scaled to an optical frequency of low 10 at 1 second averaging time, offering a great potential for applications in optical atomic clock metrology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.