The cancellation of harmonic noise from geophysical records can be achieved by subtracting an estimate of the harmonic noise. Estimating the harmonic noise consists of estimating the fundamental frequency and the amplitudes and phases of all harmonics. We propose a new frequency-estimation method that builds upon the estimator originally proposed by Nyman and Gaiser. This Nyman and Gaiser estimation (NGE) method exploits the fact that the noise fundamental frequency is known to be close to 60 Hz. The NGE method is based on solving a system of four equations that determine the amplitude, phase, and frequency of a given harmonic in the harmonic noise. Hence, NGE can produce frequency estimates for all harmonics. Our improved estimator uses a suitable linear combination of these NGE frequency estimates to produce a more accurate estimate of the fundamental frequency. Our method is more accurate than NGE, and its accuracy is comparable to least-squares estimation (LSE). The advantage of our method is that it is about two times faster than LSE. This speed gain can become valuable when processing large magnetotelluric (MT) data records. Applying our method to the restoration of MT data, we found that the harmonic noise amplitude in the periodogram is reduced by at least 60 dB to a level below that of MT data.
We use multifractal analysis as a tool for the characterization of geological well log signals. The signals investigated come from dipmeter microresistivity log devices. It is suggested that the multifractal spectra computed from these signals could be used to distinguish geological formations and lithofacies containing different types of oil reservoir heterogeneities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.