The results of studies on the improvement of technology for producing highquality planting material of half-high blueberry and Arctic bramble by the method of clonal micropropagation are presented in the current paper. Creation of forest berry plantations in peat extraction areas allows reducing environmental damage and significantly increasing the efficiency of the timber industry. In recent decades, there has been an increasing interest in the creation of forest berry plantations on drained and cutover peatlands in Russia and other countries. It is necessary to use varietal planting material for the successful cultivation of forest berry plants on an industrial scale. Clonal micropropagation is the most effective of the vegetative methods for obtaining planting material, which allows receiving a huge amount of healthy planting material all year round in the conditions of a small laboratory area. Chloride-free ecosterilizer and bleaching agent based on sodium hypochlorite “Belizna” with an exposure of 15 and 20 min showed high efficiency in sterilization of explants of half-high blueberry and Arctic bramble. The highest viability of explants of the studied forest berry crops was observed when sterilized with a 0.1 % mercuric chloride solution and 15 min exposure, and its sharp decrease at 20 min exposure. At the stage of micropropagation, with an increase in the concentration of cytokinin 6-BAP from 0.5 to 1.0 mg/L on the nutrient Woody Plant Medium the number of shoots in regenerated plants of half-high blueberry (Northcountry and Northblue cultivars) and Arctic bramble (Anna and Sofia cultivars) increased. The effect of the concentration of IBA-derived auxin on the number and length of roots of regenerated plants was observed at the in vitro rooting stage.
Introduction. Forest berry plants are popular on the food market and in pharmacy for their high nutritional and medicinal value. Plantations of forest berry plants can proliferate on unused lands, including depleted peatlands. Clonal micropropagation is the most effective method for obtaining large quantities of high quality planting material. Light-emitting diodes are highly effective for clonal micropropagation. The research objective was to study the effect of different spectral ranges on the process of root formation of forest berry plants in vitro.
Study objects and methods. The research featured regenerant plants of half-highbush blueberry, arctic bramble, American cranberry, European cranberry, lingonberry, and Kamchatka bilberry of different cultivars. A set of experiments made it possible to study the effect of lighting type on the growth and development of the root system of forest berry plants in vitro using white fluorescent lamps, white spectrum LED lamps, and LED lamps with a combination of white, red, and blue spectra at the in vitro rooting stage of clonal micropropagation.
Results and its discussion. The largest number (3.4–14.6 pcs.) and the maximum total length (10.0–156.9 cm) of roots were observed under LED lamps with a combination of white, red, and blue spectra. The effect was by 1.1–2.8 and 2.0–4.5 times higher than in the case of white-spectrum LED lamps, and by 2.3–7.0 and 3.3–14.9 times than in the case of fluorescent lamps. Variety and shape proved to have no significant effect on biometric indicators.
Conclusion. LED lamps had a positive effect on the process of rhizogenesis of forest berry plants during clonal micropropagation. They appeared to be more effective than fluorescent lamps. The combination of white, blue, and red spectra increased the biometric parameters of plants at the stage of in vitro rooting.
The article presents the results of experimental studies on various propagation methods of the Arctic bramble in the Kostroma region. Industrial cultivation of forest berry plantations is a possible effective solution to the problem of low profitability of using nontimber forest products, reduction of the wild berries resources and their productivity and quality, and reclamation of cutover peatlands. It is advisable to use high-yield varietal planting material to create such plantations. Special attention is paid to propagation and production of healthy planting material using culture of plant cells and tissues. Data on sterilization of explants when introduced in vitro are given. The highest efficiency of sterilization was observed when using a chlorine-free eco-sterilizer (the plant survival rate on the MS nutrient medium was 90–93 %). The effect analysis of the passage number of regenerated plants on the multiplication factor of the Arctic bramble varieties was carried out. The optimal concentrations of cytokinins at the stage of micropropagation are shown. The largest number of the Arctic bramble roots was observed when adding 1.0 mg/L of Indole-3-butyric acid (IBA) and 0.5 mg/L of Ecogel to the nutrient medium. The technological and agrotechnical operations performed during the cultivation of planting material of forest berry plantations are considered. Data on the coefficients of vegetative propagation of plants and their resistance to diseases, yielding capacity, and recultivation of cutover peatlands are given. The best planting material of the Arctic bramble are ball-rooted seedlings. Sawdust and sphagnum were used in the cultivation of this berry on the peatland. The economic efficiency of its cultivation with the method of clonal micropropagation was 358.2 %. For citation: Makarov S.S., Tyak G.V., Kuznetsova I.B., Chudetsky A.I., Tsaregradskaya S.Yu. Producing Planting Material of Rubus arcticus L. by Clonal Micropropagation. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 6, pp. 89–99. DOI: 10.37482/0536-1036-2021-6-89-99
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.