We present a detailed comparison of the microscopic dynamics and the macroscopic mechanical behavior of novel butyl rubber ionomers with tunable dynamics of sparse sticky imidazole-based sidegroups that form clusters of about 20 units separated by essentially unperturbed chains. This material platform shows promise for application as self-healing elastomers. Size and thermal stability of the ionic clusters were probed by small-angle X-ray scattering, and the chain and sticker dynamics were studied by a combination of broadband dielectric spectroscopy (BDS) and advanced NMR methods. The results are correlated with the rheological behavior characterized by dynamic− mechanical analysis (DMA). While the NMR-detected chain relaxation and DMA results agree quantitatively and confirm relevant aspects of the sticky-reptation picture on a microscopic level, we stress and explain that apparent master curves are of limited use for such a comparison. The cluster-related relaxation time detected by BDS is much shorter than the elastic chain relaxation time, although the weak conductivity does follow the latter. The systematic trends across the sample series suggest that all relaxations are dominated by a cluster-related activation barrier, but also that the BDS-based cluster relaxation does not seem to be directly associated with the effective sticker lifetime. Nonlinear stress−strain experiments demonstrate a reduction of sticker lifetime on stretching and that the stored stress and the elastic recovery depend on the deformation rate.
The focus of this work is on the nature of selfhealing of ionically modified rubbers obtained by reaction of brominated poly(isobutylene-co-isoprene) rubber (BIIR) with various alkylimidazoles such as 1-methylimidazole, 1-butylimidazole, 1-hexylimidazole, 1-nonylimidazole, and 1-(6chlorohexyl)-1H-imidazole. Based on stress−strain and temperature dependent DMA measurements, a structural influence of the introduced ionic imidazolium moieties on the formation of ionic clusters and, as a consequence, on the mechanical strength and self-healing behavior of the samples could be evidenced. These results are fully supported by a molecular-level assessment of the network structure (crosslink and constraint density) and the dynamics of the ionic clusters using an advanced proton low-field NMR technique. The results show distinct correlations between the macroscopic behavior and molecular chain dynamics of the modified rubbers. In particular, it is shown that the optimization of material properties with regard to mechanical and self-healing behavior is limited by opposing tendencies. Samples with reduced chain dynamics exhibit superior mechanical behavior but lack on self-healing behavior. In spite of these limitations, the overall performance of some of our samples including self-healing behavior exceeds distinctly that of other self-healing rubbers described in the literature so far.
A new approach to hybrid model network formation based upon heterocomplementary end‐linking of four‐arm star poly‐ε‐caprolactone (PCL) and linear polypropylene glycol (PPG) precursors is demonstrated. Specifically, hydroxy‐terminated PCL(OH)4 and an amino‐terminated linear PPG(NH2)2 are reacted with a bifunctional coupling agent containing one carboxylic acid chloride group and one oxazinone group. PCL(OH)4 is first reacted with the former in a solution, and the so‐obtained oxazinone‐terminated intermediate is then reacted with PPG(NH2)2 to form a network both in the solution and in the melt. A strong effect of electron‐withdrawing groups on the reactivity of the oxazinone group, and thus on the network formation, is evidenced. Network structure and properties are studied by swelling experiments and low‐field multiple‐quantum (MQ) NMR, which confirm the successful formation of hybrid networks and provide information on the significant network inhomogeneities. On the methodological side, a reliable approach to MQ NMR data analysis for networks of variable degree of inhomogeneity is discussed.
We elucidate the properties of unentangled telechelic poly(isobutylene) (PIB) chains in bulk forming dynamic micellar networks mediated by endgroups capable of hydrogenbonding and π−π interactions. The effects of the molecular architecture and type of endgroup on the properties of networks are studied by a combination of small-angle X-ray scattering (SAXS), rheology, low-resolution NMR, and dielectric spectroscopy (DS). It is found that star-shaped molecules form more time-stable networks with larger and somewhat more distantly arranged aggregates compared to their linear counterparts. Using stickers providing less hydrogen bonds speeds up terminal flow significantly, yet surprisingly, the nanoscale morphology, apparent activation energies, and the timescale of endgroup fluctuations probed by DS are very similar across the two sample series. The correlation of results from the three dynamic methods (rheology, NMR, and DS) thus fortifies previous findings for linear chains: (i) even for star molecules, terminal stress relaxation is governed by single-chain relaxation rather than the reorganization of whole micelles, and (ii) the cluster-related relaxation time accessed by DS has no trivial relation to the actual sticky bond lifetime, the determination of which is concluded to be an open problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.