Gold nanoparticles represent an important class of functional nanomaterials for optoelectronics, biomedical applications, and catalysis. Therefore, controllable synthesis of nanoparticles with specified size and shape is important. Though reduction of gold ions is quite a simple process and may be performed with many different protocols, the reproducibility of the results and transfer of protocols between independent research groups remains a challenging task. Machine learning analysis based on statistical approaches is hardly applicable to the published data, since most of the researchers report only successful syntheses. In this work, we apply uniform sampling of the reaction parameter space. The concentrations of gold precursor, reducing agent, and surfactant were varied via an improved Latin hypercube sampling, and each run was performed under in situ UV−vis control. Based on the resulting set of optical spectra, we address the relevant chemical questions about nanoparticle formation, their shape, and period of growth. Our work demonstrates a data driven approach applied to the space of reaction parameters in a limited available set of experiments.
This paper is concerned with development of parallelizing compiler onto computer system with distributed memory. Industrial parallelizing compilers create programs for shared memory systems. Transformation of sequential programs onto systems with distributed memory requires development of new functions. This is becoming topical for future computer systems with hundreds and more cores.
Experience of designing different variants for web-based development environment (IDE) for Optimizing parallelizing system and compiler for reconfigurable architecture is described. Designed system is based on existing tools and frameworks such as Jupyter Notebook and Eclipse Che. Set of requirements for Optimizing parallelizing system components is developed to make it possible to integrate them into web-based development environment accessible through the Internet. Designing portable environment for compiler development, compiler technology demonstration and teaching parallel program development is also described. Examples of performing newly developed program transformations are shown to be used during program optimizations for FPGA inside the designed web environment. Means of program transformation visualization are described for use with Jupyter Notebook. The work shown demonstrates possibility to organize remote access to library of instruments and tools for program optimizations currently under development that would be convenient for application developers.
Аннотация. Описывается опыт проектирования различных вариантов webсреды разработки (IDE) для Оптимизирующей распараллеливающей системы и компилятора на реконфигурируемую архитектуру на основе существующих инструментов, таких как Jupyter Notebook и Eclise Che. Формируются требования к инструментам в составе Открытой распараллеливающей системы для поддержки их интеграции в web среду разработки, доступную в сети Интернет. Описывается процесс создания переносимого окружения для разработки модулей компилятора, демонстрации его работы и обучения навыкам разработки параллельных программ. Ключевые слова: интегрированная среда разработки программ, распараллеливающий компилятор, контейнеризация, Web IDE, облачные вычисления, ПЛИС.
Аннотация. Приводятся доводы в пользу высокоуровневого анализа текста на частичные дубликаты для оптимизации синтеза на ПЛИС из программы на языке С. Описываются возможные подходы к такому анализу. Приводится выбранный способ поиска важных фрагментов с фильтрацией результатов через статическое профилирование. Для поиска частично повторяющихся фрагментов используется комбинация методов анализа текста и поиска шаблонов в дереве программы после синтаксического разбора. Статическое профилирование позволяет выбрать фрагменты кода, которые выгодно выполнять на ПЛИС. Представлены результаты анализа кода некоторых тестовых программ. На основе сделанного анализа выбраны требования к разрабатываемому преобразованию программ code factoring для внедрения в состав компилятора с высокоуровневого языка на ПЛИС.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.