Background: The consumption of antioxidants, including phenolic compounds, is considered important for preventing the oxidative damage diseases and ageing. The total polyphenol content (TPC) is the parameter used to estimate the quality of plant-derived products. Methods: Phenol oxidase activity of green bean (Phaseolus vulgaris) crude extract (in the presence of hydrogen peroxide) and banana (Musa sp.) pulp crude extract has been studied spectrophotometrically using catechol, gallic acid, caffeic acid, ferulic acid, and quercetin as substrates. All studied compounds have been oxidized in the presence of green bean crude extract and hydrogen peroxide; all studied compounds except ferulic acid have been oxidized in the presence of banana pulp crude extract. Michaelis constants (Km) and maximum reaction rates (Vmax) have been determined for oxidation in the presence of green bean crude extract and hydrogen peroxide (Km are 3.8×10-4 M, 1.6×10-3 M, 2.2×10-4 M, 2.3×10-4 M, 1.4×10-4 M and Vmax are 0.046 min-1, 0.102 min-1, 0.185 min-1, 0.053 min-1, 0.041 min-1 for catechol, gallic acid, caffeic acid, ferulic acid, and quercetin, respectively) and for oxidation in the presence of banana pulp crude extract (Km are 1.6×10-3 M, 3.8×10-3 M, 2.2×10-3 M, 4.2×10-4 M and Vmax are 0.058 min-1, 0.025 min-1, 0.027 min-1, 0.015 min-1 for catechol, gallic acid, caffeic acid, and quercetin, respectively). The influence of 3-methyl-2-benzothiazolinone hydrazone (MBTH) on the oxidation reactions kinetics has been studied: Michaelis constants values decrease and maximum reaction rates increase, which contributes to the increase in sensitivity of the determination. Results: Kinetic procedures of Total Polyphenol Content (TPC) determination using crude plants extracts in the presence of MBTH have been proposed (time of analysis is 1 min). For gallic acid (used as a standard for TPC determination) detection limit is 5.3×10-5 M, quantitation limit is 1.8×10-4 M, and linear range is 1.8×10-4 - 1.3×10-3 M for green bean crude extract; detection limit is 2.9×10-5 M, quantitation limit is 9.5×10-5 M, and linear range is 9.5×10-5 - 2.4×10-3 M for banana pulp crude extract. Proposed procedures are characterized by higher interference thresholds for sulfites, ascorbic acid, and citric acid compared to pure enzymes (horseradish peroxidase and mushroom tyrosinase) in the same conditions. Compared with standard Folin-Ciocalteu (FC) method the procedures described in this work are also characterized by less interference and more rapid determination. Conclusion: The procedures have been applied to TPC determination in tea, coffee, and wine samples. The results agree with the FC method for tea and coffee samples and are lower for wine samples, probably, due to sulfites interference.
General anesthetic drugs have been associated with various unwanted effects including an interference with mitochondrial function. We had previously observed increases of lactate formation in the mouse brain during anesthesia with volatile anesthetic agents. In the present work, we used mitochondria that were freshly isolated from mouse brain to test mitochondrial respiration and ATP synthesis in the presence of six common anesthetic drugs. The volatile anesthetics isoflurane, halothane, and (to a lesser extent) sevoflurane caused an inhibition of complex I of the electron transport chain in a dose-dependent manner. Significant effects were seen at concentrations that are reached under clinical conditions (< 0.5 mM). Pentobarbital and propofol also inhibited complex I but at concentrations that were two-fold higher than clinical EC50 values. Only propofol caused an inhibition of complex II. Complex IV respiration was not affected by either agent. Ketamine did not affect mitochondrial respiration. Similarly, all anesthetic agents except ketamine suppressed ATP production at high concentrations. Only halothane increased cytochrome c release indicating damage of the mitochondrial membrane. In summary, volatile general anesthetic agents as well as pentobarbital and propofol dose-dependently inhibit mitochondrial respiration. This action may contribute to depressive actions of the drugs in the brain.
Caves are considered as ecosystems isolated from the surface in varying degrees. Hypogean habitats are mostly A study of cultivated species of microfungi in two show caves Novoafonskaya (Caucasus) and Ali-Sadr (Iran) was carried out. The species composition of fungi has been analyzed in the air and cave sediments along the excursion route. Species identification was performed using standard approaches and cultivation methods. Jaccard index was applied to estimate similarity of communities of different biotopes. The species diversity of microfungi was higher in the Novoafonskaya cave where 50 species of microfungi were identified. Only 38 species were isolated from the Ali-Sadr cave. Representatives of Ascomycota predominated in fungal communities. The greatest species diversity was noted in the genera Alternaria, Aspergillus, Fusarium, Penicillium, and Trichoderma. Species Alternaria alternata, Cladosporium cladosporioides, Cladosporium herbarum, Pseudogymnoascus pannorum, Oidiodendron tenuissimum and Penicillium chrysogenum were identified in all biotopes of both caves. Comparison of two biotopes of the caves using the Jaccard index revealed a high similarity in the species composition in the soil and air of the Novoafonskaya cave (KJ = 0.64). On the contrary, the species composition of fungi was different in Ali-Sadr cave (KJ = 0.22), which may be explained by intensive propagules input from the surface due to the cave morphology features and the arrangement of excursion route.
Unique natural objects, such as the caves of the Gobustan National Historical and Artistic Preserve, are also of great cultural and historical value due to rock art and sites of ancient people. A favorable microclimate makes these habitats convenient for colonization by microbiota, including phototrophs. In arid regions with intense seasonal fluctuations of microclimatic parameters, the conditions for survival are the least favorable; therefore, it becomes especially important to determine the composition of communities that are the most adapted to specific conditions. This work aimed to identify the biodiversity of communities of caves and grottoes of the Gobustan Reserve. The studies were carried out in July 2019. Samples were analyzed for cyanobacteria and algae by microscopy and cultivation methods, microfungi were isolated by soil dilution, and the fouling glass method was also used. In total, 29 taxa of cyanobacteria and algae, 18 taxa of fungi, and 3 species of mosses were identified. The studied habitats were dominated by the algae Chlorella vulgaris, Aphanocapsa sp., and Stichococcus bacillaris; the subdominants were Jaaginema subtilissimum, Leptolyngbya tenuis, Chlorococcum minutum, and Humidophila contenta. Microfungi had the highest occurrence of Aspergillus niger, Aureobasidium pullulans, Alternaria alternata, and Talaromyces ruber. It was noted that cyanobacteria dominated in morphologically differentiated biofilms and green algae on the rocks. The greatest number of microfungi was found in the aphotic zone and bryophyte tufts. The dominance of green algae is atypical for most caves of other regions and may be associated with intense lighting of habitats. The absence of protonema is a consequence of the aridity and low moisture content of the substrates.
In the current study abilities for the mixotrophic growth of phototropic cave strains were observed. The influence of organic substrates on the growth rate on Chlorella vulgaris, Stichococcus bacillaris, Leptolyngbya foveolara, Scytonema were studied. In most cases glucose, maltose, glycerine, malate, acetate, sucrose, and peptone showed a stimulating effect on the culture growth rate by the dark and by the light incubation. Specific abilities for mixotrophic carbon consumption were proved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.