Nanosized inorganic particles are of great interest because their electronic properties can be easily tailored, providing a tremendous potential for applications in optoelectronic devices, light-emitting diodes, solar cells and hydrogen storage. Confinement of electrons and holes to dimensions comparable to their wavelength leads to quantum-well states with modified wavefunctions and density of states. Surface phenomena are crucial in determining nanoparticle properties in view of their large surface-to-volume ratio. Despite a wealth of information, many fundamental questions about the nature of the surface and its relationship with the electronic structure remain unsolved. Ab initio calculations on CdSe nanocrystals suggest that passivating the ligands does not produce the ideal wurtzite structure and that Se atoms relax outwards irrespective of passivation. Here we show that implanted positrons are trapped at the surface of CdSe nanocrystals. They annihilate mostly with the Se electrons, monitor changes in composition and structure of the surface while hardly sensing the ligand molecules, and we thus unambiguously confirm the predicted strong surface relaxation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.