We show that, contrary to assertions in the literature, the main contribution to the axion-photon coupling need not be quantized in the units proportional to e 2 . In particular, we discuss a loophole in the argument for this quantization and then provide explicit counterexamples. Hence, we construct a generic axion-photon effective Lagrangian and find that the axion-photon coupling may be dominated by previously unknown Wilson coefficients. We show that this result implies a significant modification of conventional axion electrodynamics and sets new targets for axion experiments. At the core of our theoretical analysis lies a critical reexamination of the interactions between axions and magnetic monopoles. We show that, contrary to claims in the literature, magnetic monopoles need not give mass to axions. Moreover, we find that a future detection of an axion or axion-like particle with certain parameters can serve as evidence for the existence of magnetically charged matter.
We propose a model for the QCD axion which is realized through a coupling of the Peccei-Quinn scalar field to magnetically charged fermions at high energies. We show that the axion of this model solves the strong CP problem and then integrate out heavy magnetic monopoles using the Schwinger proper time method. We find that the model discussed yields axion couplings to the Standard Model which are drastically different from the ones calculated within the KSVZ/DFSZ-type models, so that large part of the corresponding parameter space can be probed by various projected experiments. Moreover, the axion we introduce is consistent with the astrophysical hints suggested both by anomalous TeV-transparency of the Universe and by excessive cooling of horizontal branch stars in globular clusters. We argue that the leading term for the cosmic axion abundance is not changed compared to the conventional pre-inflationary QCD axion case for axion decay constant fa> 1012 GeV.
We report on developments of the Geant4 electromagnetic physics sub-libraries of Geant4 release 10.4 and beyond. Modifications are introduced to the models of photoelectric effect, bremsstrahlung, gamma conversion, single and multiple scattering. The theory-based Goudsmit-Saunderson model of electron/positron multiple scattering has been recently reviewed and a new improved version, providing the most accurate results for scattering of electrons and positrons, was made available. The updated interfaces, models and configurations have already been integrated into LHC applications and may be useful for any type of simulations.
Recently, interactions between putative axions and magnetic monopoles have been revisited by two of the authors.[1] It is shown that significant modifications to conventional axion electrodynamics arise due to these interactions, so that the axion–photon coupling parameter space is expanded from one parameter to three . Poynting theorem is implemented to determine how to exhibit sensitivity to and using resonant haloscopes, allowing new techniques to search for axions and a possible indirect way to determine if magnetically charged matter exists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.