Poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is the most studied and explored mixed ion‐electron conducting polymer system. PEDOT:PSS is commonly included as an electroactive conductor in various organic devices, e.g., supercapacitors, displays, transistors, and energy‐converters. In spite of its long‐term use as a material for storage and transport of charges, the fundamentals of its bulk capacitance remain poorly understood. Generally, charge storage in supercapacitors is due to formation of electrical double layers or redox reactions, and it is widely accepted that PEDOT:PSS belongs to the latter category. Herein, experimental evidence and theoretical modeling results are reported that significantly depart from this commonly accepted picture. By applying a two‐phase, 2D modeling approach it is demonstrated that the major contribution to the capacitance of the two‐phase PEDOT:PSS originates from electrical double layers formed along the interfaces between nanoscaled PEDOT‐rich and PSS‐rich interconnected grains that comprises two phases of the bulk of PEDOT:PSS. This new insight paves a way for designing materials and devices, based on mixed ion‐electron conductors, with improved performance.
SignificancePlants with integrated electronics, e-Plants, have been presented recently. Up to now the devices and circuits have been manufactured in localized regions of the plant due to limited distribution of the organic electronic material. Here we demonstrate the synthesis and application of a conjugated oligomer that can be delivered in every part of the vascular tissue of a plant and cross through the veins into the apoplast of leaves. The oligomer polymerizes in vivo due to the physicochemical environment of the plant. We demonstrate long-range conducting wires and supercapacitors along the stem. Our findings open pathways for autonomous energy systems, distributed electronics, and new e-Plant device concepts manufactured in living plants.
Nonradiative decay of plasmons in metallic nanostructures offers unique means for light-to-heat conversion at the nanoscale. Typical thermoplasmonic systems utilize discrete particles, while metal nanohole arrays were instead considered suitable as heat sinks to reduce heating effects. By contrast, we show for the first time that under uniform broadband illumination (e.g., the sun) ultrathin plasmonic nanohole arrays can be highly competitive plasmonic heaters and provide significantly higher temperatures than analogous nanodisk arrays. Our plasmonic nanohole arrays also heat significantly more than nonstructured metal films, while simultaneously providing superior light transmission. Besides being efficient light-driven heat sources, these thin perforated gold films can simultaneously be used as electrodes. We used this feature to develop "plasmonic thermistors" for electrical monitoring of plasmon-induced temperature changes. The nanohole arrays provided temperature changes up to 7.5 K by simulated sunlight, which is very high compared to previously reported plasmonic systems under similar conditions (solar illumination and ambient conditions). Both temperatures and heating profiles quantitatively agree with combined optical and thermal simulations. Finally, we demonstrate the use of a thermoplasmonic nanohole electrode to power the first hybrid plasmonic ionic thermoelectric device, resulting in strong solar-induced heat gradients and corresponding thermoelectric voltages.
We demonstrated an asymmetric aqueous supercapacitor made of p-and n-type conducting polymer electrodes. We used the high electron affinity (EA) n-type polymer poly(benzimidazobenzophenanthroline) (BBL) as the anode conducting material, and the low ionization potential (IP) p-type polar polythiophene p(g 4 2T-T) as the cathode material. EA BBL matches IP p(g 4 2T-T) , enabling the fabrication of all-organic asymmetric p/n-supercapacitors that function in aqueous electrolytes. The devices operate in a voltage window up to 1 V, yielding areal capacitances of 90 mF cm −2 and specific capacitances of 33 F g −1 as well as excellent cycling stability with almost 100% capacitance retention over 10 000 cycles.
A recently developed water soluble self-doped sodium salt of bis[3,4ethylenedioxythiophene]3thiophene butyric acid (ETE-S) has been electropolymerized and characterized by means of spectroelectrochemistry, electron paramagnetic resonance spectroscopy, and cyclic voltammetry, combined with the density functional theory (DFT) and time dependent DFT calculations. The focus of the studies was to underline the nature of the charge carriers when the electrochemically polymerized ETE-S films undergo a reversible transition from reduced to electrically conductive oxidized states. Spectroelectrochemistry shows clear distinctions between absorption features from reduced and charged species. In the reduced state the absorption spectrum of ETE-S electropolymerized film shows a peak that is attributed to HOMO!LUMO transition. As the oxidation level increases, this peak
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.