A new strategy for the preparation of functional, multiarm star polymers via nitroxide-mediated "living" radical polymerization has been explored. The generality of this approach to the synthesis of three-dimensional macromolecular architectures allows for the construction of nanoscopically defined materials from a wide range of different homo, block, and random copolymers combining both apolar and polar vinylic repeat units. Functional groups can also be included along the backbone or as peripheral/chain end groups, thereby modulating the reactivity and polarity of defined portions of the stars. This modular approach to the synthesis of three-dimensional macromolecules permits the application of these tailored materials as multifunctional hosts for hydrogen bonding, nanoparticle formation, and as scaffolds for catalytic groups. Examples of applications of the functional stars in catalysis include their use in a Heck-type coupling as well as an enantioselective addition reaction.
A modular one-component supramolecular transient network in water, based on poly(ethylene glycol) and end-capped with four-fold hydrogen bonding units, is reported. Due to its nonlinear structural formation, this system allows active proteins to be added to the hydrogel during formation. Once implanted in vivo it releases the protein by erosion of both the protein and polymer via dissolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.