Bacteria can adjust the structure of colonies and biofilms to enhance their survival rate under external stress. Here, we explore the link between bacterial interaction forces and colony structure. We show that the activity of extracellular pilus motors enhances local ordering and accelerates fusion dynamics of bacterial colonies. The radial distribution function of mature colonies shows local fluidlike order. The degree and dynamics of ordering are dependent on motor activity. At a larger scale, the fusion dynamics of two colonies shows liquidlike behavior whereby motor activity strongly affects surface tension and viscosity.
Bacterial growth within colonies and biofilms is heterogeneous. Local reduction of growth rates has been associated with tolerance against various antibiotics. However, spatial gradients of growth rates are poorly characterized in threedimensional bacterial colonies. Here, we report two spatially resolved methods for measuring growth rates in bacterial colonies. As bacteria grow and divide, they generate a velocity field that is directly related to the growth rates. We derive profiles of growth rates from the velocity field and show that they are consistent with the profiles obtained by single-cell-counting. Using these methods, we reveal that even small colonies initiated with a few thousand cells of the human pathogen Neisseria gonorrhoeae develop a steep gradient of growth rates within two generations. Furthermore, we show that stringent response decelerates growth inhibition at the colony center. Based on our results, we suggest that aggregation-related growth inhibition can protect gonococci from external stresses even at early biofilm stages.
Bacterial type 4 pili (T4P) are extracellular polymers that initiate the formation of microcolonies and biofilms. T4P continuously elongate and retract. These pilus dynamics crucially affect the local order, shape, and fluidity of microcolonies. The major pilin subunit of the T4P bears multiple post-translational modifications. By interfering with different steps of the pilin glycosylation and phosphoform modification pathways, we investigated the effect of pilin post-translational modification on the shape and dynamics of microcolonies formed by Neisseria gonorrhoeae. Deleting the phosphotransferase responsible for phosphoethanolamine modification at residue serine 68 inhibits shape relaxations of microcolonies after perturbation and causes bacteria carrying the phosphoform modification to segregate to the surface of mixed colonies. We relate these mesoscopic phenotypes to increased attractive forces generated by T4P between cells. Moreover, by deleting genes responsible for the pilin glycan structure, we show that the number of saccharides attached at residue serine 63 affects the ratio between surface tension and viscosity and cause sorting between bacteria carrying different pilin glycoforms. We conclude that different pilin post-translational modifications moderately affect the attractive forces between bacteria but have severe effects on the material properties of microcolonies.
Membrane potential in bacterial systems has been shown to be dynamic and tightly related to survivability at the single-cell level. However, little is known about spatiotemporal patterns of membrane potential in bacterial colonies and biofilms. Here, we discovered a transition from uncorrelated to collective dynamics within colonies formed by the human pathogen Neisseria gonorrhoeae. In freshly assembled colonies, polarization is heterogeneous with instances of transient and uncorrelated hyper- or depolarization of individual cells. As colonies reach a critical size, the polarization behavior transitions to collective dynamics: A hyperpolarized shell forms at the center, travels radially outward, and halts several micrometers from the colony periphery. Once the shell has passed, we detect an influx of potassium correlated with depolarization. Transient hyperpolarization also demarks the transition from volume to surface growth. By combining simulations and the use of an alternative electron acceptor for the respiratory chain, we provide strong evidence that local oxygen gradients shape the collective polarization dynamics. Finally, we show that within the hyperpolarized shell, tolerance against aminoglycoside antibiotics increases. These findings highlight that the polarization pattern can signify the differentiation into distinct subpopulations with different growth rates and antibiotic tolerance.
characterize the interplay between tumor cells and angiogenesis, as well as their proliferation, phenotypic transitions, and death. We use this model to predictearly in course of neoadjuvant therapy-the eventual response of the individual patient. Success in this endeavor would enable replacing an ineffective treatment with an alternative regimen, thereby potentially improving outcomes and curtailing unnecessary toxicities. Furthermore, our approach can be applied to any disease site for which neoadjuvant therapy is indicated and the requisite data is accessible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.