The design of efficient municipal solid waste (MSW) pre-collection networks can contribute to the global efficiency and sustainability of the reverse logistic chain of MSW in modern cities. With this aim, in this paper a comprehensive methodology that involves making decisions in several stages, from waste fraction classification to the final optimization of waste bins’ location, was applied in two real cases of the city of Bahía Blanca, Argentina. This city, does not have much available data about waste generation and, therefore, an important fieldwork had to be performed for applying this methodology, involving estimating population density per block and waste generation rate per inhabitant, identifying the location of commercial and institutional buildings and also estimating its generation rate, as well as performing a characterization of the MSW from similar studies in the literature and surveys performed to make decisions. The modelling of the urban characteristics was performed in a geographic information system. In the bins’ location problem, a mixed-integer optimization model was applied, seeking to minimize the investment costs, given the maximum area available and the capacity of the bins. Different scenarios were analysed, considering different collection frequencies and the maximum distance to be travelled by the user.
Municipal solid waste management is a paramount activity in modern cities due to environmental, social and economic problems that can arise when mishandled. In this work, the sequencing of micro-routes in the Argentine city of Bahía Blanca is addressed, which is modelled as a vehicle routing problem with travel time limit and the vehicle’s capacity. Particularly, we propose two mathematical formulations based on mixed integer programming and we solve a set of instances of the city of Bahía Blanca based on real data. Moreover, with this model, we estimate the total distance and travel time of the waste collection and use this data to analyse the possibility of installing a transfer station. The results demonstrate the competitiveness of the approach to resolve realistic instances of the target problem and suggest the convenience of installing a transfer station in the city considering the reduction of the travelled distance.
In the last decades, integral municipal solid waste management (IMSWM) has become one of the most challenging areas for local governmental authorities, which have struggled to lay down sustainable and financially stable policies for the sector. In this paper a model that evaluates the efficiency of IMSWMs through a combination of Data Envelopment Analysis (DEA) and an Artificial Neural Network (ANN) is presented. In a first stage, applying DEA, municipal administrations are classified according to the efficiency of their garbage processing systems. This is done in order to infer what modifications are necessary to make garbage handling more efficient. In a second stage, an ANN is used for predicting the necessary resources needed to make the waste processing system efficient. This methodology is applied on a toy model with 50 towns as well as on a real-world case of 21 cities. The results show the usefulness of the model for the evaluation of relative efficiency and for guiding the improvement of the system.
In the last decades, integral municipal solid waste management (IMSWM) has become one of the most challenging areas for local governmental authorities, which have struggled to lay down sustainable and financially stable policies for the sector. In this paper a model that evaluates the efficiency of IMSWMs through a combination of Data Envelopment Analysis (DEA) and an Artificial Neural Network (ANN) is presented. In a first stage, applying DEA, municipal administrations are classified according to the efficiency of their garbage processing systems. This is done in order to infer what modifications are necessary to make garbage handling more efficient. In a second stage, an ANN is used for predicting the necessary resources needed to make the waste processing system efficient. This methodology is applied on a toy model with 50 towns as well as on a real-world case of 21 cities. The results show the usefulness of the model for the evaluation of relative efficiency and for guiding the improvement of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.