Background:Despite improvements in treatments, metastatic breast cancer remains difficult to cure. Bones constitute the most common site of first-time recurrence, occurring in 40–75% of cases. Therefore, evaluation for possible osseous metastases is crucial. Technetium 99 (99Tc) bone scintigraphy and fluorodexossyglucose (FDG) positron emission tomography (PET)-computed tomography (PET-CT) are the most commonly used techniques to assess osseous metastasis. PET magnetic resonance (PET-MR) imaging is an innovative technique still under investigation. We compared the capability of PET-MR to that of same-day PET-CT to assess osseous metastases in patients with breast cancer.Methods:One hundred and nine patients with breast cancer, who underwent same-day contrast enhanced (CE)-PET-CT and CE-PET-MR, were evaluated. CE-PET-CT and CE-PET-MR studies were interpreted by consensus by a radiologist and a nuclear medicine physician. Correlations with prior imaging and follow-up studies were used as the reference standard. Binomial confidence intervals and a χ2 test were used for categorical data, and paired t-test was used for the SUVmax data; a non-informative prior Bayesian approach was used to estimate and compare the specificities.Results:Osseous metastases affected 25 out 109 patients. Metastases were demonstrated by CE-PET-CT in 22 out of 25 patients (88%±7%), and by CE-PET-MR in 25 out of 25 patients (100%). CE-PET-CT revealed 90 osseous metastases and CE-PET-MR revealed 141 osseous metastases (P<0.001). The estimated sensitivity of CE-PET-CT and CE-PET-MR were 0.8519 and 0.9630, respectively. The estimated specificity for CE-FDG-PET-MR was 0.9884. The specificity of CE-PET-CT cannot be determined from patient-level data, because CE-PET-CT yielded a false-positive lesion in a patient who also had other, true metastases.Conclusions:CE-PET-MR detected a higher number of osseous metastases than did same-day CE-PET-CT, and was positive for 12% of the patients deemed osseous metastasis-negative on the basis of CE-PET-CT.
PET/MR enterography offers a potential noninvasive technique for the differentiation of purely fibrotic strictures from mixed or inflammatory strictures. A hybrid biomarker that incorporates both MR and PET information performed better for stricture evaluation than either modality alone.
Background:Differences in genetics and receptor expression (phenotypes) of invasive ductal breast cancer (IDC) impact on prognosis and treatment response. Immunohistochemistry (IHC), the most used technique for IDC phenotyping, has some limitations including its invasiveness. We explored the possibility of contrast-enhanced positron emission tomography magnetic resonance (CE-FDG PET/MR) to discriminate IDC phenotypes.Methods:21 IDC patients with IHC assessment of oestrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor-2 (HER2), and antigen Ki-67 (Ki67) underwent CE-FDG PET/MR. Magnetic resonance-perfusion biomarkers, apparent diffusion coefficient (ADC), and standard uptake value (SUV) were compared with IHC markers and phenotypes, using a Student's t-test and one-way ANOVA.Results:ER/PR− tumours demonstrated higher Kepmean and SUVmax than ER or PR+ tumours. HER2− tumours displayed higher ADCmean, Kepmean, and SUVmax than HER2+tumours. Only ADCmean discriminated Ki67⩽14% tumours (lower ADCmean) from Ki67>14% tumours. PET/MR biomarkers correlated with IHC phenotype in 13 out of 21 patients (62% P=0.001).Conclusions:Positron emission tomography magnetic resonance might non-invasively help discriminate IDC phenotypes, helping to optimise individual therapy options.
The aim of the present study was to evaluate the performance of whole-body diffusion-weighted imaging (WB-DWI), whole-body positron emission tomography with computed tomography (WB-PET/CT), and whole-body positron emission tomography with magnetic resonance imaging (WB-PET/MRI) in staging patients with untreated invasive ductal carcinoma of the breast. Fifty-one women with newly diagnosed invasive ductal carcinoma of the breast underwent WB-DWI, WB-PET/CT and WB-PET/MRI before treatment. A radiologist and a nuclear medicine physician reviewed in consensus the images from the three modalities and searched for occurrence, number and location of metastases. Final staging, according to each technique, was compared. Pathology and imaging follow-up were used as the reference. WB-DWI, WB-PET/CT and WB-PET/MRI correctly and concordantly staged 33/51 patients: stage IIA in 7 patients, stage IIB in 8 patients, stage IIIC in 4 patients and stage IV in 14 patients. WB-DWI, WB-PET/CT and WB-PET/MRI incorrectly and concordantly staged 1/51 patient as stage IV instead of IIIA. Discordant staging was reported in 17/51 patients. WB-PET/MRI resulted in improved staging when compared to WB-PET/CT (50 correctly staged on WB-PET/MRI vs. 38 correctly staged on WB-PET/CT; McNemar's test; p<0.01). Comparing the performance of WB-PET/MRI and WB-DWI (43 correct) did not reveal a statistically significant difference (McNemar test, p=0.14). WB-PET/MRI is more accurate in the initial staging of breast cancer than WB-DWI and WB-PET/CT, however, the discrepancies between WB-PET/MRI and WB-DWI were not statistically significant. When available, WB-PET/MRI should be considered for staging patient with invasive ductal breast carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.