During tissue-invasive events, migrating cells penetrate type I collagen-rich interstitial tissues by mobilizing undefined proteolytic enzymes. To screen for members of the matrix metalloproteinase (MMP) family that mediate collagen-invasive activity, an in vitro model system was developed wherein MDCK cells were stably transfected to overexpress each of ten different MMPs that have been linked to matrix remodeling states. MDCK cells were then stimulated with scatter factor/hepatocyte growth factor (SF/HGF) to initiate invasion and tubulogenesis atop either type I collagen or interstitial stroma to determine the ability of MMPs to accelerate, modify, or disrupt morphogenic responses. Neither secreted collagenases (MMP-1 and MMP-13), gelatinases (gelatinase A or B), stromelysins (MMP-3 and MMP-11), or matrilysin (MMP-7) affected SF/HGF-induced responses. By contrast, the membrane-anchored metalloproteinases, membrane-type 1 MMP, membrane-type 2 MMP, and membrane-type 3 MMP (MT1-, MT2-, and MT3-MMP) each modified the morphogenic program. Of the three MT-MMPs tested, only MT1-MMP and MT2-MMP were able to directly confer invasion-incompetent cells with the ability to penetrate type I collagen matrices. MT-MMP–dependent invasion proceeded independently of proMMP-2 activation, but required the enzymes to be membrane-anchored to the cell surface. These findings demonstrate that MT-MMP–expressing cells can penetrate and remodel type I collagen-rich tissues by using membrane-anchored metalloproteinases as pericellular collagenases.
Vimentin is a widely expressed intermediate filament protein thought to be involved mainly in structural processes, such as wound healing. We now demonstrate that activated human macrophages secrete vimentin into the extracellular space. The maturation of blood-derived monocytes into macrophages involves several signalling pathways. We show that secretion of vimentin, which is phosphorylated at serine and threonine residues, is enhanced by the phosphatase inhibitor okadaic acid and blocked by the specific protein kinase C inhibitor GO6983. These findings are consistent with previous observations that phosphorylation of vimentin affects its intracellular localization and that vimentin is a substrate for protein kinase C (PKC). We also show that the anti-inflammatory cytokine interleukin-10 (IL-10), which inhibits PKC activity, blocks secretion of vimentin. In contrast, the pro-inflammatory cytokine tumour necrosis factor alpha (TNF-alpha) can trigger secretion of vimentin. Finally, we found that extracellular vimentin is involved in bacterial killing and the generation of oxidative metabolites, two important functions of activated macrophages. These data establish that vimentin is secreted by macrophages in response to pro-inflammatory signalling pathways and is probably involved in immune function.
Human macrophages mediate the dissolution of elastic lamina by mobilizing tissue-destructive cysteine proteinases. While macrophage-mediated elastin degradation has been linked to the expression of cathepsins L and S, these cells also express cathepsin K, a new member of the cysteine proteinase family whose elastinolytic potential exceeds that of all known elastases. To determine the relative role of cathepsin K in elastinolysis, monocytes were differentiated under conditions in which they recapitulated a gene expression profile similar to that observed at sites of tissue damage in vivo. After a 12-d culture period, monocyte-derived macrophages (MDMs) expressed cathepsin K in tandem with cathepsins L and S. Though cysteine proteinases are acidophilic and normally confined to the lysosomal network, MDMs secreted cathepsin K extracellularly in concert with cathepsins L and S. Simultaneously, MDMs increased the expression of vacuolar-type H+-ATPase components, acidified the pericellular milieu, and maintained extracellular cathepsin K in an active form. MDMs from a cathepsin K–deficient individual, however, retained the ability to express, process, and secrete cathepsins L and S, and displayed normal elastin-degrading activity. Thus, matrix-destructive MDMs exteriorize a complex mix of proteolytic cysteine proteinases, but maintain full elastinolytic potential in the absence of cathepsin K by mobilizing cathepsins L and S.
Lung cancer and chronic obstructive pulmonary disease (COPD) are leading causes of morbidity and mortality in the United States and worldwide. They share a common environmental risk factor in cigarette smoke exposure and a genetic predisposition represented by the incidence of these diseases in only a fraction of smokers. The presence of COPD increases the risk of lung cancer up to 4.5-fold. To investigate commonalities in disease mechanisms and perspectives for disease chemoprevention, the National Heart, Lung, and Blood Institute (NHLBI) and the National Cancer Institute (NCI) held a workshop. The participants identified four research objectives: 1) clarify common epidemiological characteristics of lung cancer and COPD; 2) identify shared genetic and epigenetic risk factors; 3) identify and validate biomarkers, molecular signatures, and imaging-derived measurements of each disease; and 4) determine common and disparate pathogenetic mechanisms. These objectives should be reached via four research approaches: 1) identify, publicize, and enable the evaluation and analysis of existing datasets and repositories of biospecimens; 2) obtain phenotypic and outcome data and biospecimens from large studies of subjects with and/or at risk for COPD and lung cancer; 3) develop and use animal and other preclinical models to investigate pathogenetic links between the diseases; and 4) conduct early-phase clinical trials of potential chemopreventive agents. To foster much needed research interactions, two final recommendations were made by the participants: 1) incorporate baseline phenotyping and outcome measures for both diseases in future longitudinal studies of each disease and 2) expand collaborative efforts between the NCI and NHLBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.