The advancement on explainability techniques is quite relevant in the field of Reinforcement Learning (RL) and its applications can be beneficial for the development of intelligent agents that are understandable by humans and are able cooperate with them. When dealing with Deep RL some approaches already exist in the literature, but a common problem is that it can be tricky to define whether the explanations generated for an agent really reflect the behaviour of the trained agent. In this work we will apply an approach for explainability based on the creation of a Policy Graph (PG) that represents the agent’s behaviour. Our main contribution is a way to measure the similarity between the explanations and the agent’s behaviour, by building another agent that follows a policy based on the explainability method and comparing the behaviour of both agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.