We establish sharp universal upper bounds on the length of the shortest closed geodesic on a punctured sphere with three or four ends endowed with a complete Riemannian metric of finite area. These sharp curvature-free upper bounds are expressed in terms of the area of the punctured sphere. In both cases, we describe the extremal metrics, which are modeled on the Calabi-Croke sphere or the tetrahedral sphere. We also extend these optimal inequalities for reversible and non-necessarily reversible Finsler metrics. In this setting, we obtain optimal bounds for spheres with a larger number of punctures. Finally, we present a roughly asymptotically optimal upper bound on the length of the shortest closed geodesic for spheres/surfaces with a large number of punctures in terms of the area.
We establish sharp universal upper bounds on the length of the shortest closed geodesic on a punctured sphere with three or four ends endowed with a complete Riemannian metric of finite area. These sharp curvature-free upper bounds are expressed in terms of the area of the punctured sphere. In both cases, we describe the extremal metrics, which are modeled on the Calabi-Croke sphere or the tetrahedral sphere. We also extend these optimal inequalities for reversible and non-necessarily reversible Finsler metrics. In this setting, we obtain optimal bounds for spheres with a larger number of punctures. Finally, we present a roughly asymptotically optimal upper bound on the length of the shortest closed geodesic for spheres/surfaces with a large number of punctures in terms of the area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.