The antiphospholipid syndrome (APS) is an autoimmune disease characterised by thromboembolic events and/or pregnancy morbidity in the presence of antiphospholipid antibodies (aPL). Here we show that three cofactor independent human monoclonal aPL can induce transcription of NLRP3 and caspase-1 resulting in inflammasome activation specific for NLRP3. This depends fully on activation of endosomal NADPH-oxidase-2 (NOX2) by aPL. Activation of NOX2 and subsequent inflammasome activation by aPL are independent from TLR2 or TLR4. While endosomal superoxide production induces caspase-1 and NLRP3 transcription, it does not affect prae-IL-1β transcription. Therefore, release of IL-1β occurs only after activation of additional pathways like TLR7/8 or TLR2. All effects exerted by the monoclonal aPL can be reproduced with IgG fractions of APS patients proving that the monoclonal aPL are representative for the APS. IgG fractions of healthy controls or patients suffering from systemic lupus erythematosus have no effect. In a mouse model of the APS we can show inflammasome activation in vivo. Furthermore, mononuclear cells isolated from patients with the APS show an increased expression of caspase-1 and NLRP3 which is accompanied by a three-fold increased serum concentration of IL-1β suggesting chronic inflammasome activation in APS patients. In summary, we provide further evidence that endosomal NOX2 can be activated by cofactor independent aPL. This leads to induction of the NLRP3 inflammasome. Our data indicate that cofactor independent aPL might contribute significantly to the pathogenesis of the APS.
Enantioselective synthesis of chiral alcohols through asymmetric addition of water across an unactivated alkene is a highly sought-after transformation and a big challenge in catalysis. Herein we report the identification and directed evolution of a fatty acid hydratase from Marinitoga hydrogenitolerans for the highly enantioselective hydration of styrenes to yield chiral 1-arylethanols. While directed evolution for styrene hydration was performed in the presence of heptanoic acid to mimic fatty acid binding, the engineered enzyme displayed remarkable asymmetric styrene hydration activity in the absence of the small molecule activator. The evolved styrene hydratase provided access to chiral alcohols from simple alkenes and water with high enantioselectivity (> 99 : 1 e.r.) and could be applied on a preparative scale.
Calcite is the most abundant carbonate mineral in Earth’s crust. Upon cleavage, the (10.4) plane with a rectangular unit cell is exposed. Interestingly, several experiments suggest a (2x1) surface reconstruction....
Enantioselective synthesis of chiral alcohols through asymmetric addition of water across an unactivated alkene is a highly sought-after transformation and a big challenge in catalysis. Herein we report the identification and directed evolution of a fatty acid hydratase from Marinitoga hydrogenitolerans for the highly enantioselective hydration of styrenes to yield chiral 1-arylethanols. While directed evolution for styrene hydration was performed in the presence of heptanoic acid to mimic fatty acid binding, the engineered enzyme displayed remarkable asymmetric styrene hydration activity in the absence of the small molecule activator. The evolved styrene hydratase provided access to chiral alcohols from simple alkenes and water with high enantioselectivity (> 99 : 1 e.r.) and could be applied on a preparative scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.