Waveguide-based photonic sensors provide a unique combination of high sensitivity, compact size and label-free, multiplexed operation. Interferometric configurations furthermore enable a simple, fixed-wavelength read-out making them particularly suitable for low-cost diagnostic and monitoring devices. Their limit of detection, i.e., the lowest analyte concentration that can be reliably observed, mainly depends on the sensors response to small refractive index changes, and the noise in the read-out system. While enhancements in the sensors response have been extensively studied, noise optimization has received much less attention. Here we show that order-of-magnitude enhancements in the limit of detection can be achieved through systematic noise reduction, and demonstrate a limit of detection of ∼ 10 - 8 RIU with a silicon nitride sensor operating at telecom wavelengths.
Integrated photonics devices, based in subwavelength grating (SWG) metamaterials, have shown unprecedented performance in a wide variety of situations. Since their proposal and first experimental demonstration in 2010 designers have made use of the new degrees of freedom provided by these structures to design advanced devices with improved capabilities. The extended design space provided by SWG structures has been successfully used to engineer the refractive index, the dispersion and, more recently, the waveguide birefringence, thus allowing novel advanced device design. In this invited talk we will review some of the advances made by our group in the field
We report on our advances on the use of subwavelength metamaterials for silicon photonic devices, including narrowband filters, antennas, polarization handling, on-chip beam forming and sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.