Three genes involved in gluconate metabolism, gntR, gntK, and gntU, which code for a regulatory protein, a gluconate kinase, and a gluconate transporter, respectively, were cloned from Escherichia coli K-12 on the basis of their known locations on the genomic restriction map. The gene order is gntU, gntK, and gntR, which are immediately adjacent to asd at 77.0 min, and all three genes are transcribed in the counterclockwise direction. The gntR product is 331 amino acids long, with a helix-turn-helix motif typical of a regulatory protein. The gntK gene encodes a 175-amino-acid polypeptide that has an ATP-binding motif similar to those found in other sugar kinases. While GntK does not show significant sequence similarity to any known sugar kinases, it is 45% identical to a second putative gluconate kinase from E. coli, gntV. The 445-amino-acid sequence encoded by gntU has a secondary structure typical of membrane-spanning transport proteins and is 37% identical to the gntP product from Bacillus subtilis. Kinetic analysis of GntU indicates an apparent K m for gluconate of 212 M, indicating that this is a low-affinity transporter. Studies demonstrate that the gntR gene is monocistronic, while the gntU and gntK genes, which are separated by only 3 bp, form an operon. Expression of gntR is essentially constitutive, while expression of gntKU is induced by gluconate and is subject to fourfold glucose catabolite repression. These results confirm that gntK and gntU, together with another gluconate transport gene, gntT, constitute the GntI system for gluconate utilization, under control of the gntR gene product, which is also responsible for induction of the edd and eda genes of the Entner-Doudoroff pathway.Escherichia coli is found in the large intestines of vertebrates, usually as a minority member of the normal flora, and is capable of utilizing a wide range of carbohydrates (40). Sugars are normally catabolized via the Embden-MeyerhofParnas glycolytic pathway and the pentose phosphate pathway, which are the two central and constitutive routes of intermediary carbohydrate metabolism in E. coli (17). A third central route, the Entner-Doudoroff pathway, was discovered in 1952 in Pseudomonas saccharophila (12) and was later shown to be present in E. coli (13,45).The Entner-Doudoroff pathway, as it operates in E. coli, is specifically induced by gluconate and allows its entry into central glycolytic metabolism (for a review, see reference 6). Early genetic studies of gluconate metabolism revealed some of the genetic loci involved in gluconate transport and gluconate phosphorylation, as well as the key enzymes of the EntnerDoudoroff pathway (1, 9, 14, 24, 32, 46). There are two systems for gluconate transport and phosphorylation in E. coli (1, 24). GntI, the main system, contains gntT, gntU, and gntK, which code for high-and low-affinity gluconate transporters and a thermoresistant gluconokinase, respectively. The genes gntT, gntU, and gntK are located in the bioH-asd region of the chromosome, at 77.0 min on the E. coli geno...
The Escherichia coli gntT gene was subcloned from the Kohara library, and its expression was characterized. The cloned gntT gene genetically complemented mutant E. coli strains with defects in gluconate transport and directed the formation of a high-affinity gluconate transporter with a measured apparent K m of 6 M for gluconate. Primer extension analysis indicated two transcriptional start sites for gntT, which are separated by 66 bp and which give rise to what appears on a Northern blot to be a single, gluconate-inducible, 1.42-kb gntT transcript. Thus, it was concluded that gntT is monocistronic and is regulated by two promoters. Both of the promoters have ؊10 and ؊35 sequence elements typical of 70 promoters and catabolite gene activator protein binding sites in appropriate locations to exert glucose catabolite repression. In addition, two putative gnt operator sites were identified in the gntT regulatory region. A search revealed the presence of nearly identical palindromic sequences in the regulatory regions of all known gluconate-inducible genes, and these seven putative gnt operators were used to derive a consensus gnt operator sequence. A gntT::lacZ operon fusion was constructed and used to examine gntT expression. The results indicated that gntT is maximally induced by 500 M gluconate, modestly induced by very low levels of gluconate (4 M), and partially catabolite repressed by glucose. The results also showed a pronounced peak of gntT expression very early in the logarithmic phase, a pattern of expression similar to that of the Fis protein. Thus, it is concluded that GntT is important for growth on low concentrations of gluconate, for entry into the logarithmic phase, and for cometabolism of gluconate and glucose.
A sample of 58 familial breast cancer patients from Venezuela were screened for germline mutations in the coding sequences and exon-intron boundaries of BRCA1 (MIM no. 113705) and BRCA2 (MIM no. 600185) genes by using conformation-sensitive gel electrophoresis. Ashkenazi Jewish founder mutations were not found in any of the samples. We identified 6 (10.3%) and 4 (6.9%) patients carrying germline mutations in BRCA1 and BRCA2, respectively. Four pathogenic mutations were found in BRCA1, one is a novel mutation (c.951_952insA), while the other three had been previously reported (c.1129_1135insA, c.4603G>T and IVS20+1G>A). We also found 4 pathogenic mutations in BRCA2, two novel mutations (c.2732_2733insA and c.3870_3873delG) and two that have been already reported (c.3036_3039delACAA and c.6024_6025_delTA). In addition, 17 variants of unknown significance (6 BRCA1 variants and 11 BRCA2 variants), 5 BRCA2 variants with no clinical importance and 22 polymorphisms (12 in BRCA1 and 10 in BRCA2) were also identified. This is the first genetic study on BRCA gene mutations conducted in breast cancer patients from Venezuela. The ethnicity of our population, as well as the heterogeneous and broad spectrum of BRCA genes mutations, must be considered to optimize genetic counseling and disease prevention in affected families.
Haemophilia A is caused by mutations in the gene encoding coagulation factor VIII (FVIII). In severe Haemophilia A (sHA), two inversions are responsible for approximately 50% of the genetic alterations (intron 22 and intron 1 inversions). The other mutations are extremely diverse and each affected family generally has its own mutation. Our aim was to detect the genetic alterations present in the FVIII gene (F8) in 54 unrelated male patients with sHA in Venezuela. We initially detected the presence of the intron 22 inversion by performing inverse PCR, and the negative patients for this inversion were analysed for the intron 1 inversion by PCR. Patients negative for both inversions were analysed using Conformation Sensitive Gel Electrophoresis for mutations in all exons, promoter region and 3¢-UTR. sHA causative mutations were identified in 49 patients. Intron-22 and -1 inversions were detected in 41% and 0% of patients respectively. Besides these two mutations, 25 different mutations were identified, including nine nonsense, four small deletions, two small insertions, four missense, three splicing mutations and three large deletions. Seven novel mutations were identified, including two nonsense mutations, two small deletions, one small insertion, one missense mutation and one splicing mutation. Thirty one percent of the patients with identified mutations developed inhibitors against exogenous FVIII. This is the first report of F8 mutations in patients with sHA in Venezuela; the data from this study suggests that the spectrum of gene defects found in these patients is as heterogeneous as reported previously for other populations.
The isolation and properties of strains of Escherichia coli carrying mutations affecting either the low affinity transport for gluconate (gene gntU) or the thermoresistant gluconokinase (gene gntK) are described. A lesion of each type was genetically characterized by transduction experiments. Both mutations mapped in the asd region, and the order was malA-glpD-asd-gntU-gntK, with the last two markers at about min 75.78 and 75.86 on the map, respectively. Mutations altering specifically gntU have not been previously reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.