Abstract. We consider the model checking problem for probabilistic pushdown automata (pPDA) and properties expressible in various probabilistic logics. We start with properties that can be formulated as instances of a generalized random walk problem. We prove that both qualitative and quantitative model checking for this class of properties and pPDA is decidable. Then we show that model checking for the qualitative fragment of the logic PCTL and pPDA is also decidable. Moreover, we develop an error-tolerant model checking algorithm for PCTL and the subclass of stateless pPDA. Finally, we consider the class of ω-regular properties and show that both qualitative and quantitative model checking for pPDA is decidable.
We consider two-player turn-based games with zero-reachability and zero-safety objectives generated by extended vector addition systems with states. Although the problem of deciding the winner in such games is undecidable in general, we identify several decidable and even tractable subcases of this problem obtained by restricting the number of counters and/or the sets of target configurations.
We study the computational complexity of central analysis problems for One-Counter Markov Decision Processes (OC-MDPs), a class of finitely-presented, countable-state MDPs. OC-MDPs extend finite-state MDPs with an unbounded counter. The counter can be incremented, decremented, or not changed during each state transition, and transitions may be enabled or not depending on both the current state and on whether the counter value is 0 or not. Some states are "random", from where the next transition is chosen according to a given probability distribution, while other states are "controlled", from where the next transition is chosen by the controller. Different objectives for the controller give rise to different computational problems, aimed at computing optimal achievable objective values and optimal strategies. OC-MDPs are in fact equivalent to a controlled extension of (discrete-time) Quasi-Birth-Death processes (QBDs), a purely stochastic model heavily studied in queueing theory and applied probability. They can thus be viewed as a natural "adversarial" extension of a classic stochastic model. They can also be viewed as a natural probabilistic/controlled extension of classic onecounter automata. OC-MDPs also subsume (as a very restricted special case) a recently studied MDP model called "solvency games" that model a risk-averse gambling scenario. Basic computational questions for OC-MDPs include "termination" questions and "limit" questions, such as the following: does the controller have a strategy to ensure that the counter (which may, for example, count the number of jobs in the queue) will hit value 0 (the empty queue) almost surely (a.s.)? Or that the counter will have lim sup value ∞, a.s.? Or, that it will hit value 0 in a selected terminal state, a.s.? Or, in case such properties are not satisfied almost surely, compute their optimal probability over all strategies. We provide new upper and lower bounds on the complexity of such problems. Specifically, we show that several quantitative and almost-sure limit problems can be answered in polynomial time, and that almost-sure termination problems (without selection of desired terminal states) can also be answered in polynomial time. On the other hand, we show that the almost-sure termination problem with selected terminal states is PSPACE-hard and we provide an exponential time algorithm for this problem. We also characterize classes of strategies that suffice for optimality in several of these settings. Our upper bounds combine a number of techniques from the theory of MDP reward models, the theory of random walks, and a variety of automata-theoretic methods.given probability. Such questions are similar in spirit to questions asked in the rich literature on "adversarial queueing theory" (see, e.g., [4]), although this is a somewhat different setting. These considerations lead naturally to the extension of QBDs with control, and thus to OC-MDPs. Indeed, MDP variants of QBDs have already been studied in the stochastic modeling literature, see [27,19]. However, ...
We study Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) functions. We consider two different objectives, namely, expectation and satisfaction objectives. Given an MDP with k k k reward functions, in the expectation objective the goal is to maximize the expected limit-average value, and in the satisfaction objective the goal is to maximize the probability of runs such that the limit-average value stays above a given vector. We show that under the expectation objective, in contrast to the single-objective case, both randomization and memory are necessary for strategies, and that finite-memory randomized strategies are sufficient. Under the satisfaction objective, in contrast to the single-objective case, infinite memory is necessary for strategies, and that randomized memoryless strategies are sufficient for ε ε ε-approximation, for all ε > 0 ε > 0 ε > 0. We further prove that the decision problems for both expectation and satisfaction objectives can be solved in polynomial time and the trade-off curve (Pareto curve) can be ε ε ε-approximated in time polynomial in the size of the MDP and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.