In the present study we developed a model of diet-induced obesity (DIO) in male C57 BL/6J mice using an 8-wk high fat diet. This model should better reflect the physiology of the majority of the human obese patients than mouse genetic models of obesity with defects in leptin or leptin signaling. At the end of the diet, DIO mice displayed an increased weight (20%) and higher leptin, insulin, glucose, and corticosterone plasma levels compared with mice fed a standard diet during the same period. Moreover, they became resistant to the central effect of peripheral administration of leptin. Oligonucleotide microarray studies were conducted in adipose tissue. They showed that a great number of genes are differentially expressed. The majority of these genes (69%) are down-regulated in DIO mice. Among those are genes encoding enzymes of the lipid metabolism or markers of adipocyte differentiation, enzymes involved in detoxification processes, as well as structural components of the cytoskeleton. Some other groups of genes displayed increased expression, such as those encoding inflammatory markers. The results of the microarray analysis were confirmed by semiquantitative RT-PCR studies run on a selected number of genes that were differentially expressed or not modified.
Agouti-related protein (Agrp), primarily expressed in the hypothalamus, is an endogenous antagonist of alphaMSH at the level of melanocortin 3 receptor (MC3-R) and MC4-R, but the adrenal gland represents the second major Agrp-expressing tissue. In adrenal fasciculata cells, the glucocorticoid secretion is under the control of ACTH, which binds specifically MC2-R, the only functional melanocortin receptor described in these cells to date. Nevertheless, using cultured bovine fasciculata adrenal cells, we report that Agrp has no antagonistic properties against ACTH at the level of MC2-R. In our studies, (Nle4, d-Phe7)-alphaMSH (NDP-alphaMSH) stimulated the production of cortisol in a dose-dependent manner, and these effects were abolished by Agrp or SHU9119, a synthetic antagonist of MC3-R and MC4-R. Using a more specific antagonist (JKC-363) and RT-PCR analysis, we can postulate that the effects of NDP-alphaMSH were mediated via MC4-R. These results are suggestive that adrenal glucocorticoid production could be regulated through MC4-R that may have some relevance in the physiology of adrenal cells. Moreover, Agrp might exert an autocrine control on adrenal cells because a protein with biological Agrp-like activity is secreted by these cells. This peptide could then modulate locally the functions of some peripheral tissues such as adrenals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.