The mechanisms underlying the subcellular localization of neurotrophins and their receptors are poorly understood. We show that in cultured hippocampal neurons, the mRNAs for BDNF and TrkB have a somatodendritic localization, and we quantify the extent of their dendritic mRNA localization. In the dendrites the labeling covers on average the proximal 30% of the total dendritic length. On high potassium depolarization, the labeling of BDNF and TrkB mRNA extends on average to 68% of the dendritic length. This increase does not depend on new RNA synthesis, is inhibited by the Na+ channel blocker tetrodotoxin, and involves the activation of glutamate receptors. Extracellular Ca2+, partly flowing through L-type Ca2+ channels, is absolutely required for this process to occur. At the protein level, a brief stimulation of hippocampal neurons with 10 mM KCl leads to a marked increase of BDNF and TrkB immunofluorescence density in the distal portion of dendrites, which also occurs, even if at lower levels, when transport is inhibited by nocodazole. The protein synthesis inhibitor cycloheximide abolishes this increase. The activity-dependent modulation of mRNA targeting and protein accumulation in the dendrites may provide a mechanism for achieving a selective local regulation of the activity of neurotrophins and their receptors, close to their sites of action.
Cerebellar granule cells undergo apoptosis in culture after deprivation of potassium and serum. During this process we found that tau, a neuronal microtubule-associated protein that plays a key role in the maintenance of neuronal architecture, and the pathology of which correlates with intellectual decline in Alzheimer's disease, is cleaved. The final product of this cleavage is a soluble dephosphorylated tau fragment of 17 kDa that is unable to associate with microtubules and accumulates in the perikarya of dying cells. The appearance of this 17 kDa fragment is inhibited by both caspase and calpain inhibitors, suggesting that tau is an in vivo substrate for both of these proteases during apoptosis. Tau cleavage is correlated with disruption of the microtubule network, and experiments with colchicine and taxol show that this is likely to be a cause and not a consequence of tau cleavage. These data indicate that tau cleavage and change in phosphorylation are important early factors in the failure of the microtubule network that occurs during neuronal apoptosis. Furthermore, this study introduces new insights into the mechanism(s) that generate the truncated forms of tau present in Alzheimer's disease.
Expression of viral genes in transgenic plants is a very effective tool for attenuating plant viral infection. Nevertheless, the lack of generality and risk issues related to the expression of viral genes in plants might limit the exploitation of this strategy. Expression in plants of antibodies against essential viral proteins could provide an alternative approach to engineer viral resistance. Recently, expression of complete or engineered antibodies has been successfully achieved in plants. The engineered single-chain Fv antibody scFv (refs 10, 11) is particularly suitable for expression in plants because of its small size and the lack of assembly requirements. Here we present evidence that constitutive expression in transgenic plants of a scFv antibody, directed against the plant icosahedral tombusvirus artichoke mottled crinkle virus, causes reduction of infection incidence and delay in symptom development.
Protein structure is tightly intertwined with function according to the laws of evolution. Understanding how structure determines function has been the aim of structural biology for decades. Here, we have wondered instead whether it is possible to exploit the function for which a protein was evolutionary selected to gain information on protein structure and on the landscape explored during the early stages of molecular and natural evolution. To answer to this question, we developed a new methodology, which we named CAMELS (Coupling Analysis by Molecular Evolution Library Sequencing), that is able to obtain the in vitro evolution of a protein from an artificial selection based on function. We were able to observe with CAMELS many features of the TEM-1 beta-lactamase local fold exclusively by generating and sequencing large libraries of mutational variants. We demonstrated that we can, whenever a functional phenotypic selection of a protein is available, sketch the structural and evolutionary landscape of a protein without utilizing purified proteins, collecting physical measurements, or relying on the pool of natural protein variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.