Polyamines (PAs) are nitrogenous molecules which play a well-established role in most cellular processes during growth and development under physiological or biotic/abiotic stress conditions. The molecular mode(s) of PA action have only recently started to be unveiled, and comprehensive models for their molecular interactions have been proposed. Their multiple roles are exerted, at least partially, through signalling by hydrogen peroxide (H(2)O(2)), which is generated by the oxidation/back-conversion of PAs by copper amine oxidases and PA oxidases. Accumulating evidence suggests that in plants the cellular titres of PAs are affected by other nitrogenous compounds. Here, we discuss the state of the art on the possible nitrogen flow in PAs, their interconnection with nitrogen metabolism, as well as the signalling roles of PA-derived H(2)O(2) during some developmental processes and stress responses.
Expression of viral genes in transgenic plants is a very effective tool for attenuating plant viral infection. Nevertheless, the lack of generality and risk issues related to the expression of viral genes in plants might limit the exploitation of this strategy. Expression in plants of antibodies against essential viral proteins could provide an alternative approach to engineer viral resistance. Recently, expression of complete or engineered antibodies has been successfully achieved in plants. The engineered single-chain Fv antibody scFv (refs 10, 11) is particularly suitable for expression in plants because of its small size and the lack of assembly requirements. Here we present evidence that constitutive expression in transgenic plants of a scFv antibody, directed against the plant icosahedral tombusvirus artichoke mottled crinkle virus, causes reduction of infection incidence and delay in symptom development.
Polyamine oxidases (PAOs) are FAD-dependent enzymes involved in polyamine catabolism. All so far characterized PAOs from monocotyledonous plants, such as the apoplastic maize PAO, oxidize spermine (Spm) and spermidine (Spd) to produce 1,3-diaminopropane, H(2)O(2), and an aminoaldehyde, and are thus considered to be involved in a terminal catabolic pathway. Mammalian PAOs oxidize Spm or Spd (and/or their acetyl derivatives) differently from monocotyledonous PAOs, producing Spd or putrescine, respectively, in addition to H(2)O(2) and an aminoaldehyde, and are therefore involved in a polyamine back-conversion pathway. In Arabidopsis thaliana, five PAOs (AtPAO1-AtPAO5) are present with cytosolic or peroxisomal localization and three of them (the peroxisomal AtPAO2, AtPAO3, and AtPAO4) form a distinct PAO subfamily. Here, a comparative study of the catalytic properties of recombinant AtPAO1, AtPAO2, AtPAO3, and AtPAO4 is presented, which shows that all four enzymes strongly resemble their mammalian counterparts, being able to oxidize the common polyamines Spd and/or Spm through a polyamine back-conversion pathway. The existence of this pathway in Arabidopsis plants is also evidenced in vivo. These enzymes are also able to oxidize the naturally occurring uncommon polyamines norspermine and thermospermine, the latter being involved in important plant developmental processes. Furthermore, data herein reveal some important differences in substrate specificity among the various AtPAOs, which suggest functional diversity inside the AtPAO gene family. These results represent a new starting point for further understanding of the physiological role(s) of the polyamine catabolic pathways in plants.
Polyamine oxidase (PAO) is a flavin adenine dinucleotide-dependent enzyme involved in polyamine catabolism. Animal PAOs oxidize spermine (Spm), spermidine (Spd), and/or their acetyl derivatives to produce H 2 O 2 , an aminoaldehyde, and Spd or putrescine, respectively, thus being involved in a polyamine back-conversion pathway. On the contrary, plant PAOs that have been characterized to date oxidize Spm and Spd to produce 1,3-diaminopropane, H 2 O 2 , and an aminoaldehyde and are therefore involved in the terminal catabolism of polyamines. A database search within the Arabidopsis (Arabidopsis thaliana) genome sequence showed the presence of a gene (AtPAO1) encoding for a putative PAO with 45% amino acid sequence identity with maize (Zea mays) PAO. The AtPAO1 cDNA was isolated and cloned in a vector for heterologous expression in Escherichia coli. The recombinant protein was purified by affinity chromatography on guazatine-Sepharose 4B and was shown to be a flavoprotein able to oxidize Spm, norspermine, and N 1 -acetylspermine with a pH optimum at 8.0. Analysis of the reaction products showed that AtPAO1 produces Spd from Spm and norspermidine from norspermine, demonstrating a substrate oxidation mode similar to that of animal PAOs. To our knowledge, AtPAO1 is the first plant PAO reported to be involved in a polyamine back-conversion pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.