Action and speech may take different forms, being expressed, for example, gently or rudely. These aspects of social communication, named vitality forms, have been little studied in neuroscience. In the present functional magnetic resonance imaging study, we investigated the role of insula in processing action and speech vitality forms. In speech runs, participants were asked to listen or imaging themselves to pronounce action verbs gently or rudely. In action runs, they were asked to observe or imaging themselves to perform actions gently or rudely. The results showed that, relative to controls, there was an activation of the dorso-central insula in both tasks of speech and action runs. The insula sector specific for action vitality form was located slightly more dorsally than that of speech with a large overlap of their activations. The psycho-physiological interaction analysis showed that the insular sector involved in action vitality forms processing is connected with the left hemisphere areas controlling arm actions, whereas the sector involved in speech vitality forms processing is linked with right hemisphere areas related to speech prosody. We conclude that the central part of the insula is a key region for vitality forms processing regardless of the modality by which they are conveyed or expressed.
Studies on action observation mostly described the activation of a network of cortical areas, while less investigation focused specifically on the activation and role of subcortical nodes. In the present fMRi study, we investigated the recruitment of cerebellum and basal ganglia during the execution and observation of object manipulation performed with the right hand. The observation conditions consisted in: (a) observation of manipulative actions; (b) observation of sequences of random finger movements. In the execution conditions, participants had to perform the same actions or movements as in (a) and (b), respectively. The results of conjunction analysis showed significant shared activations during both observation and execution of manipulation in several subcortical structures, including: (1) cerebellar lobules V, VI, crus I, VIIIa and VIIIb (bilaterally); (2) globus pallidus, bilaterally, and left subthalamic nucleus; (3) red nucleus (bilaterally) and left thalamus. These findings support the hypothesis that the action observation/execution network also involves subcortical structures, such as cerebellum and basal ganglia, forming an integrated network. This suggests possible mechanisms, involving these subcortical structures, underlying learning of new motor skills, through action observation and imitation.
The observation of actions performed by others is believed to activate the Action Observation Network (AON). Previous evidence suggests that subjects with a specific motor skill show increased activation of the AON during observation of the same skill. The question arises regarding which modulation of the AON occurs during observation of novel complex manipulative actions that are beyond the personal motor repertoire. To address this issue, we carried out a functional MRI study in which healthy volunteers without specific hand motor skills observed videos displaying hand-object manipulation executed by an expert with high manual dexterity, by an actor with intermediate ability or by a naïve subject. The results showed that the observation of actions performed by a naïve model produced stronger activation in a dorso-medial parieto-premotor circuit including the superior parietal lobule and dorsal premotor cortex, compared to observation of an expert actor. Functional connectivity analysis comparing the observation of the naïve model with that of the expert model, revealed increased connectivity between dorsal areas of the AON. This suggests a possible distinction between ventral and dorsal brain circuits involved in the processing of different aspects of action perception, such as kinematics and final action goal.
Background: Motor Imagery (MI) refers to mental simulation of a motor action without producing any overt movement. Previous studies showed that children with Unilateral Cerebral Palsy (UCP) are impaired in implicit MI, as demonstrated by the performance of Hand Laterality Judgment tasks. The aim of this study was to examine the specificity of explicit MI deficits in UCP children. Methods: A group of UCP children ( n = 10; aged 9–14) performed a mental chronometry task consisting in grasping an object and placing it into a container, or in imagining to perform the same action. As control, a group of typically developing (TD) children, matched by age, performed the same task. Movement durations for executed and imagined trials were recorded. A subgroup of 7 UCP children and 10 TD children also underwent a session of functional MRI to examine the activation of parieto-frontal areas typically associated to MI processes, during the imagination of reaching-grasping actions performed with the paretic hand. Results: Behavioral results revealed the existence of a correlation between executed and imagined movement durations both in TD and UCP groups. Moreover, the regression analysis in TD children showed that higher scores in mental chronometry tasks were positively correlated to increased bilateral activation of the intraparietal sulcus (IPS), superior parietal lobule (SPL), and dorsal premotor (PMd) cortex. A similar analysis revealed in the UCP group a positive correlation between a higher score in the mental chronometry task and bilateral activations of IPS, and to activation of contralesional, right PMd, and putamen during imagination of grasping movements. Conclusions: These results provide new insights on the relationship between MI capacity and motor deficits in UCP children, suggesting the possibility of the use of explicit MI training to improve patient's upper limb motor functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.