We recorded electrical activity from 532 neurons in the rostral part of inferior area 6 (area F5) of two macaque monkeys. Previous data had shown that neurons of this area discharge during goal-directed hand and mouth movements. We describe here the properties of a newly discovered set of F5 neurons ("mirror neurons', n = 92) all of which became active both when the monkey performed a given action and when it observed a similar action performed by the experimenter. Mirror neurons, in order to be visually triggered, required an interaction between the agent of the action and the object of it. The sight of the agent alone or of the object alone (three-dimensional objects, food) were ineffective. Hand and the mouth were by far the most effective agents. The actions most represented among those activating mirror neurons were grasping, manipulating and placing. In most mirror neurons (92%) there was a clear relation between the visual action they responded to and the motor response they coded. In approximately 30% of mirror neurons the congruence was very strict and the effective observed and executed actions corresponded both in terms of general action (e.g. grasping) and in terms of the way in which that action was executed (e.g. precision grip). We conclude by proposing that mirror neurons form a system for matching observation and execution of motor actions. We discuss the possible role of this system in action recognition and, given the proposed homology between F5 and human Brocca's region, we posit that a matching system, similar to that of mirror neurons exists in humans and could be involved in recognition of actions as well as phonetic gestures.
Neurons of the rostral part of inferior premotor cortex of the monkey discharge during goal-directed hand movements such as grasping, holding, and tearing. We report here that many of these neurons become active also when the monkey observes specific, meaningful hand movements performed by the experimenters. The effective experimenters' movements include among others placing or retrieving a piece of food from a table, grasping food from another experimenter's hand, and manipulating objects. There is always a clear link between the effective observed movement and that executed by the monkey and, often, only movements of the experimenter identical to those controlled by a given neuron are able to activate it. These findings indicate that premotor neurons can retrieve movements not only on the basis of stimulus characteristics, as previously described, but also on the basis of the meaning of the observed actions.
1. We stimulated the motor cortex of normal subjects (transcranial magnetic stimulation) while they 1) observed an experimenter grasping 3D-objects, 2) looked at the same 3D-objects, 3) observed an experimenter tracing geometrical figures in the air with his arm, and 4) detected the dimming of a light. Motor evoked potentials (MEPs) were recorded from hand muscles. 2. We found that MEPs significantly increased during the conditions in which subjects observed movements. The MEP pattern reflected the pattern of muscle activity recorded when the subjects executed the observed actions. 3. We conclude that in humans there is a system matching action observation and execution. This system resembles the one recently described in the monkey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.