Aquatic organisms experience environmental hypoxia as a result of eutrophication and naturally occurring tidal cycles. Mytilus galloprovincialis, being an anoxic/hypoxic-tolerant bivalve, provides an excellent model to investigate the molecular mechanisms regulating oxygen sensing. Across the animal kingdom, inadequacy in oxygen supply is signalled predominantly by hypoxia-inducible factors (HIF) and Hif-prolyl hydroxylases (PHD). In this study, hif-α 5'-end and partial phd mRNA sequences from M. galloprovincialis were obtained. Phylogenetic and molecular characterization of both HIF-α and PHD putative proteins showed shared key features with the respective orthologues from animals strongly suggesting their crucial involvement in the highly conserved oxygen sensing pathway. Both transcripts displayed a tissue-specific distribution with prominent expression in gills. Quantitative gene expression analysis of hif-α and phd mRNAs from gills of M. galloprovincialis demonstrated that both these key sensors are transcriptionally modulated by oxygen availability during the short-time air exposure and subsequent re-oxygenation treatments proving that they are critical players of oxygen-sensing mechanisms in mussels. Remarkably, hif-α gene expression showed a prompt and transient response suggesting the precocious implication of this transcription factor in the early phase of the adaptive response to hypoxia in Mytilus. HIF-α and PHD proteins were modulated in a time-dependent manner with trends comparable to mRNA expression patterns, thus suggesting a central role of their transcriptional regulation in the hypoxia tolerance strategies in marine bivalves. These results provide molecular information about the effects of oxygen deficiency and identify hypoxia-responsive biomarker genes in mussels applicable in ecotoxicological studies of natural marine areas.
We investigated the haemolytic capacity of the crude venom extracted from isolated nematocysts of Pelagia noctiluca (Cnidaria: Scyphozoa), and evidenced the proteic fractions responsible for this activity. The nematocyst venom was used at various concentrations to evaluate the haemolytic activity and the lysosomal membrane stability of red blood cells of two teleostean species treated with the extract. The nematocyst extract was assayed against erythrocytes of the two teleostean species living in different environments, Carassius auratus as a common freshwater species, and Liza aurata as a representative of seawater species. Experiments on the haemolytic activity of P. noctiluca in the presence of lipid components of erythrocyte membranes showed that sphyngomyelin strongly inhibited this activity. The crude venom was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis SDS-PAGE and high performance liquid chromatography (HPLC) to detect the proteic composition, and it was found that the active haemolytic components of this venom are distributed in at least four protein fractions. The results of our experiments indicated that Pelagia noctiluca venom induces haemolysis and lysosomal membrane destabilisation in both species and that Carassius auratus was more susceptible to jellyfish venom than was Liza aurata. No significant differences in glutathione (GSH) levels were observed between control and treatments; consequently the toxins do not cause the oxidative stress but likely recognize specific targets (i.e. sphyngomyelin) in the plasmatic membrane of red blood cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.