The Internet of Things (IoT) is increasingly a reality today. Nevertheless, some key challenges still need to be given particular attention so that IoT solutions further support the growing demand for connected devices and the services offered. Due to the potential relevance and sensitivity of services, IoT solutions should address the security and privacy concerns surrounding these devices and the data they collect, generate, and process. Recently, the Blockchain technology has gained much attention in IoT solutions. Its primary usage scenarios are in the financial domain, where Blockchain creates a promising applications world and can be leveraged to solve security and privacy issues. However, this emerging technology has a great potential in the most diverse technological areas and can significantly help achieve the Internet of Things view in different aspects, increasing the capacity of decentralization, facilitating interactions, enabling new transaction models, and allowing autonomous coordination of the devices. The paper goal is to provide the concepts about the structure and operation of Blockchain and, mainly, analyze how the use of this technology can be used to provide security and privacy in IoT. Finally, we present the stalker, which is a selfish miner variant that has the objective of preventing a node to publish its blocks on the main chain.
High glucose concentration in the airway surface liquid (ASL) is an important feature of diabetes that predisposes to respiratory infections. We investigated the role of alveolar epithelial SGLT1 activity on ASL glucose concentration and bacterial proliferation. Non-diabetic and diabetic rats were intranasally treated with saline, isoproterenol (to increase SGLT1 activity) or phlorizin (to decrease SGLT1 activity); 2 hours later, glucose concentration and bacterial proliferation (methicillin-resistant Sthaphylococcus aureus, MRSA and Pseudomonas aeruginosa, P. aeruginosa) were analyzed in bronchoalveolar lavage (BAL); and alveolar SGLT1 was analyzed by immunohistochemistry. BAL glucose concentration and bacterial proliferation increased in diabetic animals: isoproterenol stimulated SGLT1 migration to luminal membrane, and reduced (50%) the BAL glucose concentration; whereas phlorizin increased the BAL glucose concentration (100%). These regulations were accompanied by parallel changes of in vitro MRSA and P. aeruginosa proliferation in BAL (r = 0.9651 and r = 0.9613, respectively, Pearson correlation). The same regulations were observed in in vivo P. aeruginosa proliferation. In summary, the results indicate a relationship among SGLT1 activity, ASL glucose concentration and pulmonary bacterial proliferation. Besides, the study highlights that, in situations of pulmonary infection risk, such as in diabetic subjects, increased SGLT1 activity may prevent bacterial proliferation whereas decreased SGLT1 activity can exacerbate it.
The protein known as eIF5A (eukaryotic initiation factor 5A) has an elusive role in translation. It has a unique and essential hypusine modification at a conserved lysine residue in most eukaryotes. In addition, this protein is modified by phosphorylation with unknown functions. In the present study we show that a phosphorylated state of eIF5A predominates in exponentially growing Trypanosoma cruzi cells, and extensive dephosphorylation occurs in cells in stationary phase. Phosphorylation occurs mainly at Ser(2), as shown in yeast eIF5A. In addition, a novel phosphorylation site was identified at Tyr(21). In exponential cells, T. cruzi eIF5A is partially associated with polysomes, compatible with a proposed function as an elongation factor, and becomes relatively enriched in polysomal fractions in stationary phase. Overexpression of the wild-type eIF5A, or eIF5A with Ser(2) replaced by an aspartate residue, but not by alanine, increases the rate of cell proliferation and protein synthesis. However, the presence of an aspartate residue instead of Ser(2) is toxic for cells reaching the stationary phase, which show a less-pronounced protein synthesis arrest and a decreased amount of eIF5A in dense fractions of sucrose gradients. We conclude that eIF5A phosphorylation and dephosphorylation cycles regulate translation according to the growth conditions.
BitTorrent, the immensely popular file swarming system, suffers a fundamental problem: content unavailability. Although swarming scales well to tolerate flash crowds for popular content, it is less useful for unpopular content as peers arriving after the initial rush find the content unavailable.Our primary contribution is a model to quantify content availability in swarming systems. We use the model to analyze the availability and the performance implications of bundling, a strategy commonly adopted by many BitTorrent publishers today. We find that even a limited amount of bundling exponentially reduces content unavailability. Surprisingly, for swarms with highly unavailable publishers, the availability gain of bundling can result in a net improvement in download time, i.e., peers obtain more content in less time. We empirically confirm the model's conclusions through experiments on PlanetLab using the mainline BitTorrent client.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.