IntroductionImpulse control disorders (ICDs) are frequent non-motor symptoms in Parkinson’s disease (PD), with potential negative effects on the quality of life and social functioning. ICDs are closely associated with dopaminergic therapy, and genetic polymorphisms in several neurotransmitter pathways may increase the risk of addictive behaviors in PD. However, clinical differentiation between patients at risk and patients without risk of ICDs is still troublesome. The aim of this study was to investigate if genetic polymorphisms across several neurotransmitter pathways were associated with ICD status in patients with PD.MethodsWhole-exome sequencing data were available for 119 eligible PD patients from the Norwegian ParkWest study. All participants underwent comprehensive neurological, neuropsychiatric, and neuropsychological assessments. ICDs were assessed using the self-report short form version of the Questionnaire for Impulsive-Compulsive Disorders in PD. Single-nucleotide polymorphisms (SNPs) from 17 genes were subjected to regression with elastic net penalization to identify candidate variants associated with ICDs. The area under the curve of receiver-operating characteristic curves was used to evaluate the level of ICD prediction.ResultsAmong the 119 patients with PD included in the analysis, 29% met the criteria for ICD and 63% were using dopamine agonists (DAs). Eleven SNPs were associated with ICDs, and the four SNPs with the most robust performance significantly increased ICD predictability (AUC = 0.81, 95% CI 0.73–0.90) compared to clinical data alone (DA use and age; AUC = 0.65, 95% CI 0.59–0.78). The strongest predictive factors were rs5326 in DRD1, which was associated with increased odds of ICDs, and rs702764 in OPRK1, which was associated with decreased odds of ICDs.ConclusionUsing an advanced statistical approach, we identified SNPs in nine genes, including a novel polymorphism in DRD1, with potential application for the identification of PD patients at risk for ICDs.
GBA variants are of great clinical relevance for the development of dementia in Parkinson's disease, especially due to the relatively higher frequency of these alleles compared with other risk alleles.
The protein known as eIF5A (eukaryotic initiation factor 5A) has an elusive role in translation. It has a unique and essential hypusine modification at a conserved lysine residue in most eukaryotes. In addition, this protein is modified by phosphorylation with unknown functions. In the present study we show that a phosphorylated state of eIF5A predominates in exponentially growing Trypanosoma cruzi cells, and extensive dephosphorylation occurs in cells in stationary phase. Phosphorylation occurs mainly at Ser(2), as shown in yeast eIF5A. In addition, a novel phosphorylation site was identified at Tyr(21). In exponential cells, T. cruzi eIF5A is partially associated with polysomes, compatible with a proposed function as an elongation factor, and becomes relatively enriched in polysomal fractions in stationary phase. Overexpression of the wild-type eIF5A, or eIF5A with Ser(2) replaced by an aspartate residue, but not by alanine, increases the rate of cell proliferation and protein synthesis. However, the presence of an aspartate residue instead of Ser(2) is toxic for cells reaching the stationary phase, which show a less-pronounced protein synthesis arrest and a decreased amount of eIF5A in dense fractions of sucrose gradients. We conclude that eIF5A phosphorylation and dephosphorylation cycles regulate translation according to the growth conditions.
Gastric cancer is the second leading cause of cancer-related death worldwide. The identification of new cancer biomarkers is necessary to reduce the mortality rates through the development of new screening assays and early diagnosis, as well as new target therapies. In this study, we performed a proteomic analysis of noncardia gastric neoplasias of individuals from Northern Brazil. The proteins were analyzed by two-dimensional electrophoresis and mass spectrometry. For the identification of differentially expressed proteins, we used statistical tests with bootstrapping resampling to control the type I error in the multiple comparison analyses. We identified 111 proteins involved in gastric carcinogenesis. The computational analysis revealed several proteins involved in the energy production processes and reinforced the Warburg effect in gastric cancer. ENO1 and HSPB1 expression were further evaluated. ENO1 was selected due to its role in aerobic glycolysis that may contribute to the Warburg effect. Although we observed two up-regulated spots of ENO1 in the proteomic analysis, the mean expression of ENO1 was reduced in gastric tumors by western blot. However, mean ENO1 expression seems to increase in more invasive tumors. This lack of correlation between proteomic and western blot analyses may be due to the presence of other ENO1 spots that present a slightly reduced expression, but with a high impact in the mean protein expression. In neoplasias, HSPB1 is induced by cellular stress to protect cells against apoptosis. In the present study, HSPB1 presented an elevated protein and mRNA expression in a subset of gastric cancer samples. However, no association was observed between HSPB1 expression and clinicopathological characteristics. Here, we identified several possible biomarkers of gastric cancer in individuals from Northern Brazil. These biomarkers may be useful for the assessment of prognosis and stratification for therapy if validated in larger clinical study sets.
The parvulin family of peptidyl-prolyl cis/trans isomerases (PPIases) catalyzes the cis/trans isomerization of the peptide bonds preceding Pro residues. Eukaryotic parvulin-type PPIases have been shown to be involved in cell proliferation and cell cycle progression. Here we present the biochemical and molecular characterization of a novel multi-domain parvulin-type PPIase from the human pathogenic Trypanosoma cruzi, annotated as TcPar45. Like most other parvulins, Par45 has an N-terminal extension, but, in contrast to human Pin1, it contains a forkhead-associated domain (FHA) instead of a WW domain at the N-terminal end. Par45 shows a strong preference for a substrate with the basic Arg residue preceding Pro (Suc-Ala-Arg-Pro-Phe-NH-Np: k(cat)/K(M)=97.1 /M/s), like that found for human Par14. In contrast to human Pin1, but similarly to Par14, Par45 does not accelerate the cis/trans interconversion of acidic substrates containing Glu-Pro bonds. It is preferentially located in the parasite nucleus. Single RNA interference (RNAi)-mediated knock-down showed that there was a growth inhibition in procyclic Trypanosoma brucei cells. These results identify Par45 as a phosphorylation-independent parvulin required for normal cell proliferation in a unicellular eukaryotic cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.