The implementation of tools such as Genetic Algorithms has not been exploited for asset price prediction despite their power, robustness, and potential application in the stock market. This paper aims to fill the gap existing in the literature on the use of Genetic Algorithms for predicting asset pricing of investment strategies into stock markets and investigate its advantages over its peers Buy & Hold and traditional technical analysis. The Genetic Algorithms strategy applied to the MACD was carried out in two different validation periods and sought to optimize the parameters that generate the buy-sell signals. The performance between the machine learning-based approach, technical analysis with the MACD and B&H was compared. The results suggest that it is possible to find optimal values of the technical indicator parameters that result in a higher return on investment through Genetic Algorithms, beating the traditional technical analysis and B&H by around 4%. This study offers a new insight for practitioners, traders, and finance researchers to take advantage of Genetic Algorithms for trading rules application in forecasting financial asset returns under a more efficient and robust methodology based on historical data analysis.
El artículo seleccionado no se encuentra disponible por ahora a texto completo por no haber sido facilitado todavía por el investigador a cargo del archivo del mismo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.