The turbulent flow originating from the interaction between two parallel streams with different velocities is studied by means of direct numerical simulation. Rather than the more common temporal evolving layer, a spatially evolving configuration, with perturbed laminar inlet conditions is considered. The streamwise evolution and the self-similar state of turbulence statistics are reported and compared to results available in the literature. The characteristics of the transitional region agree with those observed in other simulations and experiments of mixing layers originating from laminar inlets. The present results indicate that the transitional region depends strongly on the inlet flow. Conversely, the self-similar state of turbulent kinetic energy and dissipation agrees quantitatively with those in a temporal mixing layer developing from turbulent initial conditions [M. M. Rogers and R. D. Moser, “Direct simulation of a self-similar turbulent mixing layer,” Phys. Fluids 6, 903 (1994)]. The statistical features of turbulence in the self-similar region have been analysed in terms of longitudinal velocity structure functions, and scaling exponents are estimated by applying the extended self-similarity concept. In the small scale range (60 < r/η < 250), the scaling exponents display the universal anomalous scaling observed in homogeneous isotropic turbulence. The hypothesis of isotropy recovery holds in the turbulent mixing layer despite the presence of strong shear and large-scale structures, independently of the means of turbulence generation. At larger scales (r/η > 400), the mean shear and large coherent structures result in a significant deviation from predictions based on homogeneous isotropic turbulence theory. In this second scaling range, the numerical values of the exponents agree quantitatively with those reported for a variety of other flows characterized by strong shear, such as boundary layers, as well as channel and wake flows.
The characteristic patterns of thermodiffusively unstable lean premixed hydrogen flames are studied in several large-scale simulations conducting a parameter variation with respect to the thermal expansion ratio of the flame. This enables a systematic separation of the influence of the thermodiffusive and Darrieus-Landau instabilities on the flame front's evolution. A detailed chemical mechanism is employed and the variation of the thermal expansion ratio is obtained by a modification of the equation of state. For all simulations, the flame front corrugation possesses two characteristic length scales. In particular, flames without thermal expansion also feature both length scales, suggesting that both length scales originate from the thermodiffusive instability. Additionally, the size of the largest characteristic length scale is found to increase with the thermal expansion ratio.
Direct Numerical Simulations (DNS) are conducted to study the statistics of flame surface stretch in turbulent jet premixed flames. Emphasis is placed on the rates of surface production and destruction and their scaling with the Reynolds number. Four lean methane/air turbulent slot jet flames are simulated at increasing Reynolds number and up to Re ≈ 22 × 10 3 , based on the bulk velocity, slot width, and the reactants' properties. The Karlovitz number is held approximately constant and the flames fall in the thin reaction zone regime. The simulations feature finite rate chemistry and mixture-average transport. Our data indicate that the area of the flame surface increases up to the streamwise position corresponding to 80% of the average flame length and decreases afterwards as surface destruction overtakes production. It is observed that the tangential rate of strain is responsible for the production of flame surface in the mean and surface destruction is due to the curvature term. In addition, it is found that these two terms are both significantly larger than their difference, i.e., the net surface stretch. The statistics of the tangential strain rate are in good agreement with those for infinitesimal material surfaces in homogeneous isotropic turbulence. Once scaled by the Kolmogorov time scale, the means of both contributions to stretch are largely independent of location and equal across flames with different values of the Reynolds number. Surface destruction is due mostly to propagation into the reactants where the surface is folded into a cylindrical shape with the center of curvature on the side of the reactants. The joint statistics of the displacement speed and curvature of the reactive surface are nuanced, with the most probable occurrence being that of a negative displacement speed of a flat surface, while the surface averaged displacement speed is positive as expected.
The characteristics of the internal layers of intense shear are examined in a mixing layer and in a jet, in the range of Reynolds numbers 134 < Re λ < 275. Conditionally-averaged profiles of streamwise velocity conditioned on the identified internal layers present strong velocity jumps, which account for approximately 10% of the characteristic large-scale velocity of the flow. The thickness δw of the internal layers from the combined analysis of both the mixing layer and the jet scales with δw /λ ∼ Re −1/2 λ , which suggests a scaling with the Kolmogorov length scale (η), analogous to recent observations on the turbulent/non-turbulent interface (TNTI). The thickness of the internal shear layers within the mixing layer is found to be between 9η and 11η. The concentration of a passive scalar across the internal layers is also examined, at the Schmidt number Sc = 1.4. The scalar concentration does not show any jumps across the internal layers, which is an important difference between the internal layers and the TNTI. This can be explained from the analysis of the internal layers of intense scalar gradient, where the flow topology node/saddle/saddle dominates, associated with strain, whereas the internal layers of intense shear are characterised by a prevalence of focus/stretching. A topological content analogous to that obtained in layers of intense scalar gradient is found in proximity to the TNTI, at the boundary between the viscous superlayer (VSL) and the turbulent sublayer (TSL). These observations evidence that the TNTI and the internal layers of intense scalar gradient are similar in several respects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.