Direct Numerical Simulations (DNS) are conducted to study the statistics of flame surface stretch in turbulent jet premixed flames. Emphasis is placed on the rates of surface production and destruction and their scaling with the Reynolds number. Four lean methane/air turbulent slot jet flames are simulated at increasing Reynolds number and up to Re ≈ 22 × 10 3 , based on the bulk velocity, slot width, and the reactants' properties. The Karlovitz number is held approximately constant and the flames fall in the thin reaction zone regime. The simulations feature finite rate chemistry and mixture-average transport. Our data indicate that the area of the flame surface increases up to the streamwise position corresponding to 80% of the average flame length and decreases afterwards as surface destruction overtakes production. It is observed that the tangential rate of strain is responsible for the production of flame surface in the mean and surface destruction is due to the curvature term. In addition, it is found that these two terms are both significantly larger than their difference, i.e., the net surface stretch. The statistics of the tangential strain rate are in good agreement with those for infinitesimal material surfaces in homogeneous isotropic turbulence. Once scaled by the Kolmogorov time scale, the means of both contributions to stretch are largely independent of location and equal across flames with different values of the Reynolds number. Surface destruction is due mostly to propagation into the reactants where the surface is folded into a cylindrical shape with the center of curvature on the side of the reactants. The joint statistics of the displacement speed and curvature of the reactive surface are nuanced, with the most probable occurrence being that of a negative displacement speed of a flat surface, while the surface averaged displacement speed is positive as expected.
A series of Direct Numerical Simulations (DNS) of lean methane/air flames was conducted to investigate the enhancement of the turbulent flame speed and modifications to the reaction layer structure associated with the systematic increase of the integral scale of turbulence l while the Karlovitz number and the Kolmogorov scale are kept constant. Four turbulent slot jet flames are simulated at increasing Reynolds number and up to Re ≈ 22 , 000 , defined with the bulk velocity, slot width, and the reactants' properties. The turbulent flame speed S T is evaluated locally at selected streamwise locations and it is observed to increase both in the streamwise direction for each flame and across flames for increasing Reynolds number, in line with a corresponding increase of the turbulent integral scale. In particular, the turbulent flame speed S T increases exponentially with the integral scale for l up to about 6 laminar flame thicknesses, while the scaling becomes a power-law for larger values of l . These trends cannot be ascribed completely to the increase in the flame surface, since the turbulent flame speed looses its proportionality to the flame area as the integral scale increases; in particular, it is found that the ratio of turbulent flame speed to area attains a power-law scaling l 0.2 . This is caused by an overall broadening of the reaction layer for increasing integral scale, which is not associated with a corresponding decrease of the reaction rate, causing a net enhancement of the overall burning rate. This observation is significant since it suggests that a continuous increase in the size of the largest scales of * Corresponding author.
The data presented here with respect to the behaviour of industrial scale stirred tank bioreactors equipped with modified RUSHTON turbine agitators in the biosynthesis processes of antibiotics are valid for that case that the power consumption is the same as it is in standard RUSHTON turbine agitators. Each modified RUSHTON turbine agitator was obtained through the variation of the blade surface by adding perforations so that the ratio between the perforation surface area and the full surface area (or the surface fraction of the perforations) is 0.36. In the fermentations of Streptomyces aureofaciens, Streptomyces rimosus and Penicillium chrysogenum producing tetracycline, oxytetracyline and penicillin, respectively, in bioreactors equipped with modified RUSHTON turbine agitators, the relative antibiotic production is increased by more than 30% compared to standard bioreactors.
A series of Direct Numerical Simulations (DNS) of lean methane/air flames was conducted in order to investigate the enhancement of the turbulent flame speed and modifications to the reaction layer structure associated with the systematic increase of the integral scale of turbulence l while the Karlovitz number and the Kolmogorov scale are kept constant. Four turbulent slot jet flames are simulated at increasing Reynolds number and up to Re ≈ 22000, defined based on the bulk velocity, slot width, and the reactants' properties. The turbulent flame speed S T is evaluated locally at select streamwise locations and it is observed to increase both in the streamwise direction for each flame and across flames for increasing Reynolds number, in line with a corresponding increase of the turbulent integral scale. In particular, the turbulent flame speed S T increases exponentially with the integral scale for l up to about 6 laminar flame thicknesses, while the scaling becomes a power-law for larger values of l. These trends cannot be ascribed completely to the increase in the flame surface, since the turbulent flame speed looses its proportionality to the flame area as the integral scale increases; in particular, it is found that the ratio of turbulent flame speed to area attains a power-law scaling l 0.2 . This is caused by an overall broadening of the reaction layer for increasing integral scale, which is not associated with a corresponding decrease of the reaction rate, causing a net enhancement of the overall burning rate. This observation is significant since it suggests that a continuous increase in the size of the largest scales of turbulence might be responsible for progressively stronger modifications of the flame's inner layers even if the smallest scales, i.e., the Karlovitz number, are kept constant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.