Conventional x-ray transmission tomography provides the spatial distribution of the absorption coefficient inside a sample. Other tomographic techniques, based on the detection of photons coming from fluorescent emission, Compton and Rayleigh scattering, are used for obtaining information on the internal elemental composition of the sample. However, the reconstruction problem for these techniques is generally much more difficult than that of transmission tomography, mainly due to self-absorption effects in the sample. In this article an approach to the reconstruction problem is presented, which integrates the information from the three types of signals. This method provides the quantitative spatial distribution of all elements that emit detectable fluorescent lines (Z⩾15 in usual experimental conditions), even when the absorption effects are strong, and the spatial distribution of the global density of the lighter elements. The use of this technique is demonstrated on the reconstruction of a grain of the martian meteorite NWA817, mainly composed of low Z elements not measured in fluorescence and for which this method provides a unique insight. The measurement was done at the ID22 beamline of the European Synchrotron Radiation Facility.
The aim of the SYRMA-CT collaboration is to set-up the first clinical trial of phase-contrast breast CT with synchrotron radiation (SR). In order to combine high image quality and low delivered dose a number of innovative elements are merged: a CdTe single photon counting detector, state-of-the-art CT reconstruction and phase retrieval algorithms. To facilitate an accurate exam optimization, a Monte Carlo model was developed for dose calculation using GEANT4. In this study, high isotropic spatial resolution (120 μm)(3) CT scans of objects with dimensions and attenuation similar to a human breast were acquired, delivering mean glandular doses in the range of those delivered in clinical breast CT (5-25 mGy). Due to the spatial coherence of the SR beam and the long distance between sample and detector, the images contain, not only absorption, but also phase information from the samples. The application of a phase-retrieval procedure increases the contrast-to-noise ratio of the tomographic images, while the contrast remains almost constant. After applying the simultaneous algebraic reconstruction technique to low-dose phase-retrieved data sets (about 5 mGy) with a reduced number of projections, the spatial resolution was found to be equal to filtered back projection utilizing a four fold higher dose, while the contrast-to-noise ratio was reduced by 30%. These first results indicate the feasibility of clinical breast CT with SR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.