SummaryIn presenting a unifying concept for chronic inflammation and lymphoid organogenesis, we suggest that lymphotoxin's (LT, LT-ot, TNF-J3) crucial role in these processes is pivotal and similar. Chronic inflammatory lesions that developed in the kidney and pancreas at the sites of transgene expression in rat insulin promoter-LT (RIP-LT) mice resembled lymph nodes with regard to cellular composition (T cells, B cells, plasma cells, and antigen-presenting cells), delineated T and B cell areas, primary and secondary follicles, characteristic morphologic and antigenic (ICAM-1, VCAM-1, MAdCAM-1, and PNAd) features of high endothelial venules, and ability to respond to antigen and undergo Ig class switching when obtained from mice immunized with SRBC. The vascular changes, with the exception of PNAd, appear to be the direct consequence of transgene derived LT expression, as they were also observed in RIP-LT mice lacking mature T and B cells. These data show that LT-induced chronic inflammation has the characteristics of organized lymphoid tissue.
Mycobacterium tuberculosis (Mtb) can persist in hostile intracellular microenvironments evading immune cells and drug treatment. However, the protective cellular niches where Mtb persists remain unclear. We report that Mtb may maintain long-term intracellular viability in a human bone marrow (BM)–derived CD271+/CD45− mesenchymal stem cell (BM-MSC) population in vitro. We also report that Mtb resides in an equivalent population of BM-MSCs in a mouse model of dormant tuberculosis infection. Viable Mtb was detected in CD271+/CD45− BM-MSCs isolated from individuals who had successfully completed months of anti-Mtb drug treatment. These results suggest that CD271+ BM-MSCs may provide a long-term protective intracellular niche in the host in which dormant Mtb can reside.
Key Ags of Mycobacterium tuberculosis initially identified in the context of host responses in healthy purified protein derivative-positive donors and infected C57BL/6 mice were prioritized for the development of a subunit vaccine against tuberculosis. Our lead construct, Mtb72F, codes for a 72-kDa polyprotein genetically linked in tandem in the linear order Mtb32C-Mtb39-Mtb32N. Immunization of C57BL/6 mice with Mtb72F DNA resulted in the generation of IFN-γ responses directed against the first two components of the polyprotein and a strong CD8+ T cell response directed exclusively against Mtb32C. In contrast, immunization of mice with Mtb72F protein formulated in the adjuvant AS02A resulted in the elicitation of a moderate IFN-γ response and a weak CD8+ T cell response to Mtb32c. However, immunization with a formulation of Mtb72F protein in AS01B adjuvant generated a comprehensive and robust immune response, resulting in the elicitation of strong IFN-γ and Ab responses encompassing all three components of the polyprotein vaccine and a strong CD8+ response directed against the same Mtb32C epitope identified by DNA immunization. All three forms of Mtb72F immunization resulted in the protection of C57BL/6 mice against aerosol challenge with a virulent strain of M. tuberculosis. Most importantly, immunization of guinea pigs with Mtb72F, delivered either as DNA or as a rAg-based vaccine, resulted in prolonged survival (>1 year) after aerosol challenge with virulent M. tuberculosis comparable to bacillus Calmette-Guérin immunization. Mtb72F in AS02A formulation is currently in phase I clinical trial, making it the first recombinant tuberculosis vaccine to be tested in humans.
The diagnosis of visceral leishmaniasis remains difficult in rural areas where the disease is endemic, and serologic methods still need assessment, as they are not very sensitive for the detection of asymptomatic infectious dogs. Here we present data on the development of enzyme-linked immunosorbent assay (ELISA)-based methods for the detection of antibodies against recombinant leishmanial antigens (namely, the recombinant K26 [rK26] and rK39 antigens from Leishmania infantum and the rA2 protein from Leishmania donovani) in comparison to ELISAs employing crude soluble antigen (CSA). The assays utilized sera from known negative controls (n ؍ 25) and clinically asymptomatic (n ؍ 50) and symptomatic (n ؍ 50) dogs with confirmed L. infantum infections. Additional studies were also done using sera from animals harboring other infections (n ؍ 14) for the evaluation of cross-reactivity. Our study indicated that rK26 and rK39 used in ELISAs provided very high sensitivities for the detection of symptomatic dogs (94% and 100%, respectively), followed by CSA (88%) and rA2 (70%). Conversely, rA2 was more sensitive for asymptomatic dogs (88%) than rK39 and rK26 (both 66%) and CSA (30%). Some cross-reactivity in sera from dogs with other infections (Leishmania braziliensis and Leptospira interrogans) was identified, but the rA2 protein provided the greatest specificity (98%). Data further indicate that all three recombinant proteins must be used in parallel to detect essentially all infected dogs. Efforts should be made to develop a cheap and reliable serologic test based on epitope selection from these diagnostic markers for the sensitive detection of L. infantum-infected dogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.