Peer-to-peer (P2P) lending demands effective and explainable credit risk models. Typical machine learning algorithms offer high prediction performance, but most of them lack explanatory power. However, this deficiency can be solved with the help of the explainability tools proposed in the last few years, such as the SHAP values. In this work, we assess the well-known logistic regression model and several machine learning algorithms for granting scoring in P2P lending. The comparison reveals that the machine learning alternative is superior in terms of not only classification performance but also explainability. More precisely, the SHAP values reveal that machine learning algorithms can reflect dispersion, nonlinearity and structural breaks in the relationships between each feature and the target variable. Our results demonstrate that is possible to have machine learning credit scoring models be both accurate and transparent. Such models provide the trust that the industry, regulators and end-users demand in P2P lending and may lead to a wider adoption of machine learning in this and other risk assessment applications where explainability is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.