The hallucinogenic brew Ayahuasca, a rich source of serotonergic agonists and reuptake inhibitors, has been used for ages by Amazonian populations during religious ceremonies. Among all perceptual changes induced by Ayahuasca, the most remarkable are vivid "seeings." During such seeings, users report potent imagery. Using functional magnetic resonance imaging during a closed-eyes imagery task, we found that Ayahuasca produces a robust increase in the activation of several occipital, temporal, and frontal areas. In the primary visual area, the effect was comparable in magnitude to the activation levels of natural image with the eyes open. Importantly, this effect was specifically correlated with the occurrence of individual perceptual changes measured by psychiatric scales. The activity of cortical areas BA30 and BA37, known to be involved with episodic memory and the processing of contextual associations, was also potentiated by Ayahuasca intake during imagery. Finally, we detected a positive modulation by Ayahuasca of BA 10, a frontal area involved with intentional prospective imagination, working memory and the processing of information from internal sources. Therefore, our results indicate that Ayahuasca seeings stem from the activation of an extensive network generally involved with vision, memory, and intention. By boosting the intensity of recalled images to the same level of natural image, Ayahuasca lends a status of reality to inner experiences. It is therefore understandable why Ayahuasca was culturally selected over many centuries by rain forest shamans to facilitate mystical revelations of visual nature.
The aim of the present study was to investigate how the heart and the brain react to playing chess with a computer versus in a real context in chess players. We also aim to investigate if familiarization with simulated practice leads to changes in heart rate variability (HRV) and the electroencephalographic (EEG) power spectrum. We designed a cross-sectional study, enrolling 27 chess players. They were randomly assigned to 3 minutes plus 2-second chess games: one with a computer (simulated scenario), and another in a real context. Additionally, participants were divided into two groups according to their level of familiarization of playing chess in a computer context. While they were playing, HRV and EEG were continuously recorded. Differences in HRV and EEG theta power spectrum between playing chess in a real or a simulated scenario were not found in chess players (p-value > 0.05). When participants were divided into groups (familiarized and unfamiliarized with simulated chess practice), significant differences were observed in HRV and EEG (p-value < 0.05). The EEG theta power spectrum was significantly lower, and HRV was higher in unfamiliarized players during the simulated scenario, which could indicate that they were less focused in a simulated environment than in a real context. Therefore, familiarization with simulated environments should be taken into account during the training process to achieve the best performance.
PurposeThe purpose of this study was to apply a newly developed free software program, at low cost and with minimal time, to evaluate the quality of dental and maxillofacial cone-beam computed tomography (CBCT) images.Materials and MethodsA polymethyl methacrylate (PMMA) phantom, CQP-IFBA, was scanned in 3 CBCT units with 7 protocols. A macro program was developed, using the free software ImageJ, to automatically evaluate the image quality parameters. The image quality evaluation was based on 8 parameters: uniformity, the signal-to-noise ratio (SNR), noise, the contrast-to-noise ratio (CNR), spatial resolution, the artifact index, geometric accuracy, and low-contrast resolution.ResultsThe image uniformity and noise depended on the protocol that was applied. Regarding the CNR, high-density structures were more sensitive to the effect of scanning parameters. There were no significant differences between SNR and CNR in centered and peripheral objects. The geometric accuracy assessment showed that all the distance measurements were lower than the real values. Low-contrast resolution was influenced by the scanning parameters, and the 1-mm rod present in the phantom was not depicted in any of the 3 CBCT units. Smaller voxel sizes presented higher spatial resolution. There were no significant differences among the protocols regarding artifact presence.ConclusionThis software package provided a fast, low-cost, and feasible method for the evaluation of image quality parameters in CBCT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.