A key concern for resistive-switching random access memory (RRAM) is the read noise, due to the structural, chemical, and electrical modifications taking place at the localized current path, or conductive filament (CF). Read noise typically appears as a random telegraph noise (RTN), where the current randomly fluctuates between ON and OFF levels. This paper addresses RTN in RRAM, providing physical interpretations and models for the dependence on the programming and read conditions. First, we explain the RTN dependence on the compliance current during set transition in terms of the sizedependent depletion of carriers within the CF. Then, we discuss the bias dependence of the RTN switching times and amplitude, which can be explained by Joule heating and Poole-Frenkel barrier modifications arising from the electrostatics of the RTN fluctuating center.Index Terms-Noise fluctuations, random telegraph noise (RTN), resistive-switching random access memory (RRAM).
Resistive switching memory (RRAM) relies on the voltage-driven formation/disruption of a conductive filament (CF) across a thin insulating layer. Due to the 1-D structure of the CF and discrete nature of defects, the set and reset states of the memory device generally display statistical variability from cycle to cycle. For projecting cell downscaling and designing improved programming operations, the variability as a function of the operation parameters, such as the maximum current in the set process and maximum voltage in the reset process, need to be evaluated and understood. This paper addresses set/reset variability, presenting statistical data for HfO x -based RRAM and introducing a physics-based Monte Carlo model for switching statistics. The model can predict the distribution of the set state as a function of the compliance (maximum) current during set and distribution of the reset state as a function of the stop (maximum) voltage during reset. Numerical modeling results are finally presented to provide additional insight into discrete fluctuation events. Index Terms-Noise fluctuations, random telegraph noise (RTN), resistive switching memory (RRAM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.