Abstract:The objective of this work is to compare the environmental impact of two different hot mix asphalt (HMA) materials used for road construction in Italy. The analyses used a "from cradle to gate" Life Cycle Assessment (LCA) boundary system and the methodology included considerations about raw materials and fuel supply, as well as transport and manufacturing processes. Primary data provided by the producers and secondary data available in the literature were used as part of the analyses. The results suggest that the proposed method offers rigorous criteria for a comprehensive assessment of the environmental impact of HMA materials, which could be used, among others, as an evaluation parameter in public bids.
This paper deals with a versatile, synthetic, simple and user-friendly method based on Life Cycle Assessment studies which summarizes multifaceted, often competing, environmental, technical and economic aspects in road construction. In many cases just economic criteria are applied in call for tenders, because the calculation of the environmental impact of road construction is difficult. In fact, it can be referred to many available options and both the economic and the environmental suitabilities have to be considered, in order to achieve globally sustainable results about road infrastructure work. In this research, the weighted sum model of multicriteria analysis is identified as the tool to evaluate global impact of road works, to compare solutions and to choose the best one.The advantages of the proposed approach are that the local contest and the stakeholders' objective are represented by adopting variable parameters and weights, in order to apply the method to several contexts.A case study explains potential environmental implications of using this new Road Environmental Impact Assessment to calculate effect related to the production of asphalt pavement, considering the production system for aggregates from cradle to gate, the materials transportation to road site and the works to have the road done.
Abstract:The ability to classify asphalt surfaces is an important goal for the selection of suitable non-variant targets as pseudo-invariant targets during the calibration/validation of remotely-sensed images. In addition, the possibility to recognize different types of asphalt surfaces on the images can help optimize road network management. This paper presents a multi-resolution study to improve asphalt surface differentiation using field spectroradiometric data, laboratory analysis and remote sensing imagery. Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) airborne data and multispectral images, such as Quickbird and Ikonos, were used. From scatter plots obtained by field data using λ = 460 and 740 nm, referring to MIVIS Bands 2 and 16 and Quickbird and Ikonos Bands 1 and 4, pixels corresponding to asphalt covering were identified, and the slope of their interpolation lines, assumed as asphalt lines, was calculated. These slopes, used as threshold values in the Spectral Angle Mapper (SAM) classifier, obtained an overall accuracy of 95% for Ikonos, 98% for Quickbird and 93% for MIVIS. Laboratory investigations confirm the existence of the asphalt line also for new asphalts, too.
Both the construction and use of roads have a range of environmental impacts; therefore, it is important to assess the sources of their burdens to adopt correct mitigation policies. Life cycle analysis (LCA) is a useful method to obtain demonstrable, accurate and non-misleading information for decision-making experts. The study presents a "cradle to gate with options" LCA of a provincial road during 60 year-service life. Input data derive from the bill of quantity of the project and their impacts have been evaluated according to the European standard EN 15804. The study considers the impacts of the construction and maintenance stages, lighting, and use of the vehicles on the built road. The results obtained from a SimaPro model highlight that the almost half of impacts took place during the construction stage rather than the use stage. Therefore, the adoption of environmentally friendly road planning procedures, the use of low-impact procedures in the production of materials, and the use of secondary raw materials could have the largest potential for reducing environmental impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.