In this work, a new custom design of an anomaly detection and classification system is proposed. It is composed of a convolutional Auto-Encoder (AE) hardware design to perform anomaly detection which cooperates with a mixed HW/SW Convolutional Neural Network (CNN) to perform the classification of detected anomalies. The AE features a partial binarization, so that the weights are binarized while the activations, associated to some selected layers, are non-binarized. This has been necessary to meet the severe area and energy constraints that allow it to be integrated on the same die as the MEMS sensors for which it serves as a neural accelerator. The CNN shares the feature extraction module with the AE, whereas a SW classifier is triggered by the AE when a fault is detected, working asynchronously to it. The AE has been mapped on a Xilinx Artix-7 FPGA, featuring an Output Data Rate (ODR) of 365 kHz and achieving a power dissipation of 333 W/MHz. Logic synthesis has targeted TSMC CMOS 65 nm, 90 nm, and 130 nm standard cells. Best results achieved highlight a power consumption of 138 μW/MHz with an area occupation of 0.49 mm 2 when real-time operations are set. These results enable the integration of the complete neural accelerator in the CMOS circuitry that typically sits with the inertial MEMS on the same silicon die. Comparisons with the related works suggest that the proposed system is capable of state-of-the-art performances and accuracy.
Human Activity Recognition requires very high accuracy to be effectively employed into practical applications, ranging from elderly care to microsurgical devices. The highest accuracies are achieved by Deep Learning models, but these are not easily deployable in handheld or wearable devices with very constrained resources. We therefore present a new HAR system suitable for a compact FPGA implementation. A new Binarized Neural Network (BNN) architecture achieves the classification based on data from a single tri-axial accelerometer. From our experiments, the effect of gravity and the unknown orientation of the sensor cause a degradation of the accuracy. In order to compensate for these issues, we propose a HW-friendly algorithm to pre-process the raw acceleration signal. Moreover, the very low power and hardware friendly BNN has been trained and validated on the PAMAP2 dataset, for which the pre-processing operations increase the accuracy from 51% to 99% in the best case. Aiming for a low-power design, we designed both a custom circuit to perform the pre-processing operations and a hardware accelerator for the BNN. The design on FPGA features a power dissipation of 72 mW and occupies 6788 LUTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.