Experts confirm that 85% of the world’s population is expected to live in cities by 2050. Therefore, cities should be prepared to satisfy the needs of their citizens and provide the best services. The idea of a city of the future is commonly represented by the smart city, which is a more efficient system that optimizes its resources and services, through the use of monitoring and communication technology. Thus, one of the steps towards sustainability for cities around the world is to make a transition into smart cities. Here, sensors play an important role in the system, as they gather relevant information from the city, citizens, and the corresponding communication networks that transfer the information in real-time. Although the use of these sensors is diverse, their application can be categorized in six different groups: energy, health, mobility, security, water, and waste management. Based on these groups, this review presents an analysis of different sensors that are typically used in efforts toward creating smart cities. Insights about different applications and communication systems are provided, as well as the main opportunities and challenges faced when making a transition to a smart city. Ultimately, this process is not only about smart urban infrastructure, but more importantly about how these new sensing capabilities and digitization developments improve quality of life. Smarter communities are those that socialize, adapt, and invest through transparent and inclusive community engagement in these technologies based on local and regional societal needs and values. Cyber security disruptions and privacy remain chief vulnerabilities.
2.3.3 Distribución de los días con calidad del aire buena, regular y mala .. 2.3.4 Representación geográfica de número de días con calidad del aire buena, regular y mala ..
Vehicle Inspection and Maintenance (I/M) programs were originally created for controlling the deterioration of air quality by identifying vehicles with high emissions and forcing them to undergo for mechanical maintenance. We describe a methodology, based on remote sensing campaigns, to evaluate the potential emission reductions of I/M programs in urban centers. For this purpose, a remote sensing monitoring campaign was performed in the Monterrey’s Metropolitan Area (MMA), Mexico. Four different sectors in the MMA were selected, sampling, under similar conditions to those found in ASM test, approximately 0.4% of the vehicles registered in this region. Results indicated that 39.0% of the vehicles would not comply the current national regulations for in-use vehicles. With a conservative scenario, the implementation of a vehicle I/M program in this urban center has the potential of reducing ∼69%, ∼42% and ∼28% the current HC, CO, and NO mass emissions, respectively.
Electrification of heavy-duty vehicles (HDVs) used for passengers and goods transportation is a key strategy to reduce the high levels of air pollution in large urban centers. However, the high investment cost of the commercially available electrified HDVs has limited their adoption. We hypothesized that there are applications where the operation with tailored electrified HDVs results in a lower total cost of ownership and lower well-to-wheel emissions of air pollutants, with higher acceleration capacity and energy efficiency than the fossil-fueled counterparts. The road transportation services running on fixed routes with short span distances (<50 km), such as the last mile cargo distribution and the passenger shuttle services, is a clear example with a high possibility of cost reduction through tailored electric HDVs. In this work, we present a methodology to define the most appropriate configuration of the powertrain of an electric vehicle for any given application. As a case study, this work aimed to define an electric powertrain configuration tailored for a university shuttle service application. A multi-objective weighted-sum optimization was performed to define the best geometrical gearbox ratios, energy management strategy, size of the motor, and batteries required. Based on three different driving profiles and five battery technologies, the results showed that, based on a 50 km autonomy, the obtained powertrain configuration satisfies the current vehicle operation with a reduced cost in every driving profile and battery technology compared. Furthermore, by using lithium-based batteries, the vehicle’s acceleration capacity is improved by 33% while reducing energy consumption by 37%, CO2 emissions by 31%, and the total cost of ownership by 29% when compared to the current diesel-fueled buses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.