The objective of this work was to develop a predictive model to aid non-clinical dispatchers to classify emergency medical call incidents by their life-threatening level (yes/no), admissible response delay (undelayable, minutes, hours, days) and emergency system jurisdiction (emergency system/primary care) in real time. We used a total of 1 244 624 independent incidents from the Valencian emergency medical dispatch service in Spain, compiled in retrospective from 2009 to 2012, including clinical features, demographics, circumstantial factors and free text dispatcher observations. Based on them, we designed and developed DeepEMC 2 , a deep ensemble multitask model integrating four subnetworks: three specialized to context, clinical and text data, respectively, and another to ensemble the former. The four subnetworks are composed in turn by multi-layer perceptron modules, bidirectional long short-term memory units and a bidirectional encoding representations from transformers module. DeepEMC 2 showed a macro F1score of 0.759 in life-threatening classification, 0.592 in admissible response delay and 0.757 in emergency system jurisdiction. These results show a substantial performance increase of 12.5%, 17.5% and 5.1%, respectively, with respect to the current in-house triage protocol of the Valencian emergency medical dispatch service. Besides, DeepEMC 2 significantly outperformed a set of baseline machine learning models, including naive bayes, logistic regression, random forest and gradient boosting (α=0.05). Hence, DeepEMC 2 is able to: 1) capture information present in emergency medical calls not considered by the existing triage protocol, and 2) model complex data dependencies not feasible by the tested baseline models. Likewise, our results suggest that most of this unconsidered information is present in the free text dispatcher observations. To our knowledge, this study describes the first deep learning model undertaking emergency medical call incidents classification. Its adoption in medical dispatch centers would potentially improve emergency dispatch processes, resulting in a positive impact in patient wellbeing and health services sustainability.
Objective: To develop a predictive model to aid non-clinical dispatchers to classify emergency medical call incidents by their life-threatening level (yes/no), admissible response delay (undelayable, minutes, hours, days) and emergency system jurisdiction (emergency system/primary care) in real time. Materials: A total of 1 244 624 independent retrospective incidents from the Valencian emergency medical dispatch service in Spain from 2009 to 2012, comprising clinical features, demographics, circumstantial factors and free text dispatcher observations. Methods: A deep multitask ensemble model integrating four subnetworks, composed in turn by multi-layer perceptron modules, bidirectional long short-term memory units and a bidirectional encoding representations from transformers module. Results: The model showed a F1 score of 0.771 in life-threatening classification, 0.592 in response delay and 0.801 in jurisdiction, obtaining a performance increase of 13.2%, 16.4% and 4.5%, respectively, with regard to the current in-house triage protocol of the Valencian emergency medical dispatch service. Discussion: The model captures information present in emergency medical calls not considered by the existing in-house triage protocol, but relevant to carry out incident classification. Besides, the results suggest that most of this information is present in the free text dispatcher observations. Conclusion: To our knowledge, this study presents the development of the first deep learning model undertaking emergency medical call incidents classification. Its adoption in medical dispatch centers would potentially improve emergency dispatch processes, resulting in a positive impact in patient wellbeing and health services sustainability.
The objective of this work was to discover key topics latent in free text dispatcher observations registered during emergency medical calls. We used a total of 1374931 independent retrospective cases from the Valencian emergency medical dispatch service in Spain, from 2014 to 2019. Text fields were preprocessed to reduce vocabulary size and filter noise, removing accent and punctuation marks, along with uninformative and infrequent words. Key topics were inferred from the multinomial probabilities over words conditioned on each topic from a Latent Dirichlet Allocation model, trained following an online mini-batch variational approach. The optimal number of topics was set analyzing the values of a topic coherence measure, based on the normalized pointwise mutual information, across multiple validation K-folds. Our results support the presence of 15 key topics latent in free text dispatcher observations, related with: ambulance request; chest pain and heart attack; respiratory distress; head falls and blows; fever, chills, vomiting and diarrhea; heart failure; syncope; limb injuries; public service body request; thoracic and abdominal pain; stroke and blood pressure abnormalities; pill intake; diabetes; bleeding; consciousness. The discovery of these topics implies the automatic characterization of a huge volume of complex unstructured data containing relevant information linked to emergency medical call incidents. Hence, results from this work could lead to the update of structured emergency triage algorithms to directly include this latent information in the triage process, resulting in a positive impact in patient wellbeing and health services sustainability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.