The interactions of dopamine [2-(3,4-Dihydroxyphenyl)ethylamine, (Dop-)] with methylmercury(II) (CH3Hg+), magnesium(II), calcium(II), and tin(II) were studied in NaCl(aq) at different ionic strengths and temperatures. Different speciation models were obtained, mainly characterized by mononuclear species. Only for Sn2+ we observed the formation of binuclear complexes (M2L2 and M2LOH (charge omitted for simplicity); M = Sn2+, L = Dop−). For CH3Hg+, the speciation model reported the ternary MLCl (M = CH3Hg+) complex. The dependence on the ionic strength of complex formation constants was modeled by using both an extended Debye–Hückel equation that included the Van’t Hoff term for the calculation of enthalpy change values of the formation and the Specific Ion Interaction Theory (SIT). The results highlighted that, in general, the entropy is the driving force of the process. The sequestering ability of dopamine towards the investigated cations was evaluated using the calculation of pL0.5 parameter. The sequestering ability trend resulted to be: Sn2+ > CH3Hg+ > Ca2+ > Mg2+. For example, at I = 0.15 mol dm−3, T = 298.15 K and pH = 7.4, pL0.5 = 3.46, 2.63, 1.15, and 2.27 for Sn2+, CH3Hg+, Ca2+ and Mg2+ (pH = 9.5 for Mg2+), respectively. For the Ca2+/Dop- system, the precipitates collected at the end of the potentiometric titrations were analyzed by thermogravimetry (TGA). The thermogravimetric calculations highlighted the formation of solid with stoichiometry dependent on the different metal:ligand ratios and concentrations of the starting solutions.
The interactions of dopamine [2-(3,4-Dihydroxyphenyl)ethylamine, (Dop−)] with cadmium(II), copper(II) and uranyl(VI) were studied in NaCl(aq) at different ionic strengths (0 ≤ I/mol dm−3 ≤ 1.0) and temperatures (288.15 ≤ T/K ≤ 318.15). From the elaboration of the experimental data, it was found that the speciation models are featured by species of different stoichiometry and stability. In particular for cadmium, the formation of only MLH, ML and ML2 (M = Cd2+; L = dopamine) species was obtained. For uranyl(VI) (UO22+), the speciation scheme is influenced by the use of UO2(acetate)2 salt as a chemical; in this case, the formation of ML2, MLOH and the ternary MLAc (Ac = acetate) species in a wide pH range was observed. The most complex speciation model was obtained for the interaction of Cu2+ with dopamine; in this case we observed the formation of the following species: ML2, M2L, M2L2, M2L2(OH)2, M2LOH and ML2OH. These speciation models were determined at each ionic strength and temperature investigated. As a further contribution to this kind of investigation, the ternary interactions of dopamine with UO22+/Cd2+ and UO22+/Cu2+ were investigated at I = 0.15 mol dm−3 and T = 298.15K. These systems have different speciation models, with the MM’L and M2M’L2OH [M = UO22+; M’ = Cd2+ or Cu2+, L = dopamine] common species; the species of the mixed Cd2+ containing system have a higher stability with respect the Cu2+ containing one. The dependence on the ionic strength of complex formation constants was modelled by using both an extended Debye–Hückel equation that included the Van’t Hoff term for the calculation of the formation enthalpy change values and the Specific Ion Interaction Theory (SIT). The results highlighted that, in general, the entropy is the driving force of the process. The quantification of the effective sequestering ability of dopamine towards the studied cations was evaluated by using a Boltzmann-type equation and the calculation of pL0.5 parameter. The sequestering ability was quantified at different ionic strengths, temperatures and pHs, and this resulted, in general, that the pL0.5 trend was always: UO22+ > Cu2+ > Cd2+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.